Hilbert Godel Turing and the Computer Decision Problem

Nonfiction, Computers, Advanced Computing, Computer Science, Programming
Cover of the book Hilbert Godel Turing and the Computer Decision Problem by James Constant, James Constant
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: James Constant ISBN: 9780463782866
Publisher: James Constant Publication: December 3, 2018
Imprint: Smashwords Edition Language: English
Author: James Constant
ISBN: 9780463782866
Publisher: James Constant
Publication: December 3, 2018
Imprint: Smashwords Edition
Language: English

Is there a procedure or algorithm that can decide whether statements, mathematical or non-mathematical, are true or false, win or draw? The broader decision problem can be stated as follows: Even though a mathematical or non-mathematical statement is undecidable in general, it may be possible to find a special algorithm that makes a computer model stop or checkmate. A computer model stops when a true or false decision is made. A computer model game ends when a checkmate win or draw occurs.
Philosophically, no procedure can decide whether statements in science, reason, and faith are true or false, win or draw. While it is theoretically possible to find exceptions to this rule, such exceptions are not possible absent confirmation and/or with less than perfect artifacts, computers and software, and less than perfect man-skills. True and false statements abound in science, less so in reason and non in faith.[10]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Is there a procedure or algorithm that can decide whether statements, mathematical or non-mathematical, are true or false, win or draw? The broader decision problem can be stated as follows: Even though a mathematical or non-mathematical statement is undecidable in general, it may be possible to find a special algorithm that makes a computer model stop or checkmate. A computer model stops when a true or false decision is made. A computer model game ends when a checkmate win or draw occurs.
Philosophically, no procedure can decide whether statements in science, reason, and faith are true or false, win or draw. While it is theoretically possible to find exceptions to this rule, such exceptions are not possible absent confirmation and/or with less than perfect artifacts, computers and software, and less than perfect man-skills. True and false statements abound in science, less so in reason and non in faith.[10]

More books from James Constant

Cover of the book Courts and Law by James Constant
Cover of the book Petition for Certiorari – Patent Case 01-438 - Federal Rule of Civil Procedure 52(a) by James Constant
Cover of the book Redshift and Speed of Light by James Constant
Cover of the book Prospects for Constitutional Government by James Constant
Cover of the book Petition for Certiorari – Patent Case 94-782 - Federal Rule of Civil Procedure 12(h)(3) - Patent Statute 35 USC 261 – Judgment lien Statute 12 USC 1963 by James Constant
Cover of the book Greece a Failed State by James Constant
Cover of the book Indipendent Inventors and Pro Corporate Federal Courts by James Constant
Cover of the book The Problem of Universals and the Big Bang Theory by James Constant
Cover of the book Black Holes by James Constant
Cover of the book Greek Elites and Debt Crisis by James Constant
Cover of the book America's Bid For Empire by James Constant
Cover of the book How Federal Courts Crush Inventors and Protect Corporate Interests by James Constant
Cover of the book Large Scale Uncertainty Principle and the Gamma Ray and Optical Limits by James Constant
Cover of the book America's Dilemma: Between Scylla and Charybdis by James Constant
Cover of the book Astronomical Rotations by James Constant
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy