Author: | ISBN: | 9780857098078 | |
Publisher: | Elsevier Science | Publication: | September 6, 2014 |
Imprint: | Woodhead Publishing | Language: | English |
Author: | |
ISBN: | 9780857098078 |
Publisher: | Elsevier Science |
Publication: | September 6, 2014 |
Imprint: | Woodhead Publishing |
Language: | English |
Recent advances in array-based detectors and imaging technologies have provided high throughput systems that can operate within a substantially reduced timeframe and other techniques that can detect multiple contaminants at one time. These technologies are revolutionary in terms of food safety assessment in manufacturing, and will also have a significant impact on areas such as public health and food defence. This book summarizes the latest research and applications of sensor technologies for online and high throughput screening of food.
The book first introduces high throughput screening strategies and technology platforms, and discusses key issues in sample collection and preparation. The subsequent chapters are then grouped into four sections: Part I reviews biorecognition techniques; Part II covers the use of optical biosensors and hyperspectral imaging in food safety assessment; Part III focuses on electrochemical and mass-based transducers; and finally Part IV deals with the application of these safety assessment technologies in specific food products, including meat and poultry, seafood, fruits and vegetables.
Recent advances in array-based detectors and imaging technologies have provided high throughput systems that can operate within a substantially reduced timeframe and other techniques that can detect multiple contaminants at one time. These technologies are revolutionary in terms of food safety assessment in manufacturing, and will also have a significant impact on areas such as public health and food defence. This book summarizes the latest research and applications of sensor technologies for online and high throughput screening of food.
The book first introduces high throughput screening strategies and technology platforms, and discusses key issues in sample collection and preparation. The subsequent chapters are then grouped into four sections: Part I reviews biorecognition techniques; Part II covers the use of optical biosensors and hyperspectral imaging in food safety assessment; Part III focuses on electrochemical and mass-based transducers; and finally Part IV deals with the application of these safety assessment technologies in specific food products, including meat and poultry, seafood, fruits and vegetables.