Handbook of Complex Analysis

Geometric Function Theory

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis
Cover of the book Handbook of Complex Analysis by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780080495170
Publisher: Elsevier Science Publication: December 9, 2004
Imprint: North Holland Language: English
Author:
ISBN: 9780080495170
Publisher: Elsevier Science
Publication: December 9, 2004
Imprint: North Holland
Language: English

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings.

Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem.

There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings.

Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem.

There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

More books from Elsevier Science

Cover of the book Advances in Parasitology by
Cover of the book Emergency Preparedness for Business Professionals by
Cover of the book Facelifts for Special Libraries by
Cover of the book Microgrid Technology and Engineering Application by
Cover of the book Nanocarriers for Drug Delivery by
Cover of the book Microbiorobotics by
Cover of the book Zeolites and Ordered Mesoporous Materials: Progress and Prospects by
Cover of the book Progress in Optics by
Cover of the book Handbook of Econometrics by
Cover of the book Differential Transformation Method for Mechanical Engineering Problems by
Cover of the book Stability of Nonlinear Shells by
Cover of the book Liner Ship Fleet Planning by
Cover of the book Product Development by
Cover of the book Mucosal Immunology by
Cover of the book Advances in Imaging and Electron Physics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy