God & Square Roots II

Nonfiction, Science & Nature, Mathematics
Cover of the book God & Square Roots II by Edward E. Rochon, Edward E. Rochon
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Edward E. Rochon ISBN: 9781370449439
Publisher: Edward E. Rochon Publication: September 20, 2016
Imprint: Smashwords Edition Language: English
Author: Edward E. Rochon
ISBN: 9781370449439
Publisher: Edward E. Rochon
Publication: September 20, 2016
Imprint: Smashwords Edition
Language: English

My preface mentions my just published essay of the same name, less the 'II', refuting irrational numbers. That essay included a summary of my previous refutations. The subject, having recently popped into my consciousness lately, another argument came to me. Chapter 1 uses a trapezoidal figure of two sides equal to the mantissa of √2, and the two parallel sides are the unit side and the diagonal of the unit square: √2. The two equal sides (m) are commensurable by definition. The mantissa in side √2 is included by definition. These are all commensurable. I then deduct (m) or fractional parts of (m) until an infinite series is exhausted, leaving no remaining part of the unit side without a commensurable value. Hence all sides of the trapezoid are commensurable, including 1 and √2 sides. This proves that the diagonal and sides of the unit square are commensurable. To reject the infinite series, you conclude that the mantissa (m) can be zeroed out (terminated in zeros), making it commensurable with some values of subdivision with the unit side. QED.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

My preface mentions my just published essay of the same name, less the 'II', refuting irrational numbers. That essay included a summary of my previous refutations. The subject, having recently popped into my consciousness lately, another argument came to me. Chapter 1 uses a trapezoidal figure of two sides equal to the mantissa of √2, and the two parallel sides are the unit side and the diagonal of the unit square: √2. The two equal sides (m) are commensurable by definition. The mantissa in side √2 is included by definition. These are all commensurable. I then deduct (m) or fractional parts of (m) until an infinite series is exhausted, leaving no remaining part of the unit side without a commensurable value. Hence all sides of the trapezoid are commensurable, including 1 and √2 sides. This proves that the diagonal and sides of the unit square are commensurable. To reject the infinite series, you conclude that the mantissa (m) can be zeroed out (terminated in zeros), making it commensurable with some values of subdivision with the unit side. QED.

More books from Edward E. Rochon

Cover of the book Harlot's Verse by Edward E. Rochon
Cover of the book M4 Money: An Essay by Edward E. Rochon
Cover of the book The Waist Land: A Parody by Edward E. Rochon
Cover of the book Ethereal Mea Culpa by Edward E. Rochon
Cover of the book Comedy: An Essay by Edward E. Rochon
Cover of the book Plan RD: An Essay by Edward E. Rochon
Cover of the book Seven Month Pregnancy: An Essay by Edward E. Rochon
Cover of the book Warm Fusion/Fission: An Essay by Edward E. Rochon
Cover of the book New Number Class: Diagonal Numbers II by Edward E. Rochon
Cover of the book Acceleration & Impetus by Edward E. Rochon
Cover of the book Biblical Exegesis & Fraud: An Essay by Edward E. Rochon
Cover of the book Super Long Tom: An Essay by Edward E. Rochon
Cover of the book Contra Paul by Edward E. Rochon
Cover of the book Psalms of Man by Edward E. Rochon
Cover of the book Truth & Faith: An Essay by Edward E. Rochon
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy