Fractal Solutions for Understanding Complex Systems in Earth Sciences

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Mathematics, Geometry
Cover of the book Fractal Solutions for Understanding Complex Systems in Earth Sciences by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319246758
Publisher: Springer International Publishing Publication: November 21, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319246758
Publisher: Springer International Publishing
Publication: November 21, 2015
Imprint: Springer
Language: English

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book deals with fractals in understanding problems encountered in earth science, and their solutions. It starts with an analysis of two classes of methods (homogeneous fractals random models, and homogeneous source distributions or “one point” distributions) widely diffused in the geophysical community, especially for studying potential fields and their related source distributions. Subsequently, the use of fractals in potential fields is described by scaling spectral methods for estimation of curie depth. The book also presents an update of the use of the fractal concepts in geological understanding of faults and their significance in geological modelling of hydrocarbon reservoirs. Geophysical well log data provide a unique description of the subsurface lithology; here, the Detrended Fluctuation Analysis technique is presented in case studies located off the west-coast of India. Another important topic is the fractal model of continuum percolation which quantitatively reproduce the flow path geometry by applying the Poiseuille’s equation. The pattern of fracture heterogeneity in reservoir scale of natural geological formations can be viewed as spatially distributed self-similar tree structures; here, the authors present simple analytical models based on the medium structural characteristics to explain the flow in natural fractures. The Fractal Differential Adjacent Segregation (F-DAS) is an unconventional approach for fractal dimension estimation using a box count method. The present analysis provides a better understanding of variability of the system (adsorbents – adsorbate interactions). Towards the end of book, the authors discuss multi-fractal scaling properties of seismograms in order to quantify the complexity associated with high-frequency seismic signals. Finally, the book presents a review on fractal methods applied to fire point processes and satellite time-continuous signals that are sensitive to fire occurrences.

More books from Springer International Publishing

Cover of the book World of Computing by
Cover of the book Michał Kalecki: An Intellectual Biography by
Cover of the book Clinician's Manual on Restless Legs Syndrome by
Cover of the book Intelligence and Security Informatics by
Cover of the book From Particle Systems to Partial Differential Equations III by
Cover of the book Materials Characterization by
Cover of the book HCI in Business, Government and Organizations. Interacting with Information Systems by
Cover of the book Atlas of Minimally Invasive Facelift by
Cover of the book The Trump Presidency by
Cover of the book Application and Theory of Petri Nets and Concurrency by
Cover of the book Handbook of Service Science, Volume II by
Cover of the book Colours in the development of Wittgenstein’s Philosophy by
Cover of the book Social and Family Issues in Shift Work and Non Standard Working Hours by
Cover of the book Perspectives on the Archaeology of Pipes, Tobacco and other Smoke Plants in the Ancient Americas by
Cover of the book Illustrative Handbook of General Surgery by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy