Flow and Transport in Porous Media and Fractured Rock

From Classical Methods to Modern Approaches

Nonfiction, Science & Nature, Science, Physics, Mechanics
Cover of the book Flow and Transport in Porous Media and Fractured Rock by Muhammad Sahimi, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Muhammad Sahimi ISBN: 9783527636709
Publisher: Wiley Publication: May 9, 2011
Imprint: Wiley-VCH Language: English
Author: Muhammad Sahimi
ISBN: 9783527636709
Publisher: Wiley
Publication: May 9, 2011
Imprint: Wiley-VCH
Language: English

In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject.

Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject.

Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.

More books from Wiley

Cover of the book The Dark Side of Modernity by Muhammad Sahimi
Cover of the book The Secrets of Power Selling by Muhammad Sahimi
Cover of the book Beyond Bourdieu by Muhammad Sahimi
Cover of the book Nietzsche by Muhammad Sahimi
Cover of the book The Complete Software Project Manager by Muhammad Sahimi
Cover of the book Empfehlungen des Arbeitskreises "Baugruben" (EAB) by Muhammad Sahimi
Cover of the book Statistical Intervals by Muhammad Sahimi
Cover of the book Systems Biology and Livestock Science by Muhammad Sahimi
Cover of the book Evidence Informed Nursing with Older People by Muhammad Sahimi
Cover of the book Manufacturing of Pharmaceutical Proteins by Muhammad Sahimi
Cover of the book Iraq by Muhammad Sahimi
Cover of the book Freiberufler: Fit fürs Finanzamt by Muhammad Sahimi
Cover of the book Neuroscience Nursing by Muhammad Sahimi
Cover of the book Macro Photography Photo Workshop by Muhammad Sahimi
Cover of the book The Power in a Link by Muhammad Sahimi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy