Extrasynaptic GABAA Receptors

Nonfiction, Health & Well Being, Medical, Medical Science, Pharmacology, Specialties, Internal Medicine, Neuroscience, Science & Nature, Science
Cover of the book Extrasynaptic GABAA Receptors by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781493914265
Publisher: Springer New York Publication: September 22, 2014
Imprint: Springer Language: English
Author:
ISBN: 9781493914265
Publisher: Springer New York
Publication: September 22, 2014
Imprint: Springer
Language: English

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABAA and GABAB receptors. Recently, a novel form of GABAA receptor-mediated inhibition, termed “tonic” inhibition, has been described. Whereas synaptic GABAA receptors underlie classical “phasic” GABAA receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABAA receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABAA receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This book highlights ongoing work examining the properties of recombinant and native extrasynaptic GABAA receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABAA receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABAA and GABAB receptors. Recently, a novel form of GABAA receptor-mediated inhibition, termed “tonic” inhibition, has been described. Whereas synaptic GABAA receptors underlie classical “phasic” GABAA receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABAA receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABAA receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This book highlights ongoing work examining the properties of recombinant and native extrasynaptic GABAA receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABAA receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.

More books from Springer New York

Cover of the book Emotion Regulation and Well-Being by
Cover of the book Neuroscience for Clinicians by
Cover of the book Engineering Foods for Bioactives Stability and Delivery by
Cover of the book Residue Reviews by
Cover of the book The Multiple Ligament Injured Knee by
Cover of the book Nanoscale Applications for Information and Energy Systems by
Cover of the book Information Technology for the Practicing Physician by
Cover of the book Designing Sorting Networks by
Cover of the book The Glaucoma Book by
Cover of the book The Archaeology of Market Capitalism by
Cover of the book The Relevance of the Time Domain to Neural Network Models by
Cover of the book Prions and Diseases by
Cover of the book Statistics and Analysis of Scientific Data by
Cover of the book Principles of Systems Science by
Cover of the book Introduction to Solid Mechanics by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy