Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technology, Material Science
Cover of the book Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780323480628
Publisher: Elsevier Science Publication: March 23, 2018
Imprint: Elsevier Language: English
Author:
ISBN: 9780323480628
Publisher: Elsevier Science
Publication: March 23, 2018
Imprint: Elsevier
Language: English

Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composite focuses on the recent observations and predictions regarding the size-dependent mechanical properties, material properties and processing issues of carbon nanotubes (CNTs) and other nanostructured materials. The book takes various approaches, including dedicated characterization methods, theoretical approaches and computer simulations, providing a detailed examination of the fundamental mechanisms governing the deviations of the properties of CNTs and other nanostructured materials. The book explores their applications in materials science, mechanics, engineering, chemistry and physics due to their unique and appealing properties.

The use of such materials is, however, still largely limited due to the difficulty in tuning their properties and morphological and structural features.

  • Presents a thorough discussion on how to effectively model the properties of carbon nanotubes and their polymer nanocomposites
  • Includes a size-dependent analysis of properties and multiscale modeling
  • Outlines the fundamentals and procedures of computational modeling as it is applied to carbon nanotubes and other nanomaterials
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composite focuses on the recent observations and predictions regarding the size-dependent mechanical properties, material properties and processing issues of carbon nanotubes (CNTs) and other nanostructured materials. The book takes various approaches, including dedicated characterization methods, theoretical approaches and computer simulations, providing a detailed examination of the fundamental mechanisms governing the deviations of the properties of CNTs and other nanostructured materials. The book explores their applications in materials science, mechanics, engineering, chemistry and physics due to their unique and appealing properties.

The use of such materials is, however, still largely limited due to the difficulty in tuning their properties and morphological and structural features.

More books from Elsevier Science

Cover of the book Self-Shielded Arc Welding by
Cover of the book Neural Circuit Development and Function in the Healthy and Diseased Brain by
Cover of the book Psychotropic Drugs, Prevention and Harm Reduction by
Cover of the book An Evaluation of the Benefits and Value of Libraries by
Cover of the book An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science by
Cover of the book Bayley-III Clinical Use and Interpretation by
Cover of the book A Pharmacology Primer by
Cover of the book Network Analysis, Architecture, and Design by
Cover of the book Metal Oxides in Energy Technologies by
Cover of the book Lipids by
Cover of the book Molecular Basis of Olfaction by
Cover of the book Blowout and Well Control Handbook by
Cover of the book Thymosins by
Cover of the book Integrated Reservoir Asset Management by
Cover of the book Advances in Chemical Mechanical Planarization (CMP) by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy