Evolutionary Approach to Machine Learning and Deep Neural Networks

Neuro-Evolution and Gene Regulatory Networks

Nonfiction, Science & Nature, Science, Biological Sciences, Physiology, Computers, Advanced Computing, Artificial Intelligence, General Computing
Cover of the book Evolutionary Approach to Machine Learning and Deep Neural Networks by Hitoshi Iba, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hitoshi Iba ISBN: 9789811302008
Publisher: Springer Singapore Publication: June 15, 2018
Imprint: Springer Language: English
Author: Hitoshi Iba
ISBN: 9789811302008
Publisher: Springer Singapore
Publication: June 15, 2018
Imprint: Springer
Language: English

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.

Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.

The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.

Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.

The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

More books from Springer Singapore

Cover of the book Globalization of Low-Carbon Technologies by Hitoshi Iba
Cover of the book Recent Developments in Anisotropic Heterogeneous Shell Theory by Hitoshi Iba
Cover of the book Industrial Revolution 4.0, Tech Giants, and Digitized Societies by Hitoshi Iba
Cover of the book Proceedings of GeoShanghai 2018 International Conference: Geoenvironment and Geohazard by Hitoshi Iba
Cover of the book New Theory of Children’s Thinking Development: Application in Language Teaching by Hitoshi Iba
Cover of the book Consumer Energy Conservation Behavior After Fukushima by Hitoshi Iba
Cover of the book Towards Green Lubrication in Machining by Hitoshi Iba
Cover of the book Patient Involvement in Health Technology Assessment by Hitoshi Iba
Cover of the book Contemporary Capitalism and Civil Society by Hitoshi Iba
Cover of the book Legitimation in a World at Risk by Hitoshi Iba
Cover of the book Promoting Service Leadership Qualities in University Students by Hitoshi Iba
Cover of the book Assessing Water Rights in China by Hitoshi Iba
Cover of the book Futuristic Trends in Network and Communication Technologies by Hitoshi Iba
Cover of the book Agriculturally Important Microbes for Sustainable Agriculture by Hitoshi Iba
Cover of the book Intelligent and Efficient Electrical Systems by Hitoshi Iba
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy