Euclidean Geometry and its Subgeometries

Nonfiction, Science & Nature, Mathematics, Geometry, History
Cover of the book Euclidean Geometry and its Subgeometries by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads ISBN: 9783319237756
Publisher: Springer International Publishing Publication: December 31, 2015
Imprint: Birkhäuser Language: English
Author: Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
ISBN: 9783319237756
Publisher: Springer International Publishing
Publication: December 31, 2015
Imprint: Birkhäuser
Language: English

In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties.
There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem.
Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties.
There are over 300 exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online covering construction of complex numbers, arc length, the circular functions, angle measure, and the polygonal form of the Jordan Curve theorem.
Euclidean Geometry and Its Subgeometries is intended for advanced students and mature mathematicians, but the proofs are thoroughly worked out to make it accessible to undergraduate students as well. It can be regarded as a completion, updating, and expansion of Hilbert's work, filling a gap in the existing literature.

More books from Springer International Publishing

Cover of the book The NMDA Receptors by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Pathobiology of Pulmonary Disorders by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Contemporary Sex Offender Risk Management, Volume II by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Human Agency and Behavioral Economics by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book String Analysis for Software Verification and Security by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Introduction to Anticipation Studies by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Osteochondral Tissue Engineering by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book New Ecoinformatics Tools in Environmental Science by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Elements of Neurogeometry by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Developments in Medical Image Processing and Computational Vision by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Progress in Optomechatronic Technologies by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book After–sales Service of Engineering Industrial Assets by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Rough Sets by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Therapy as Discourse by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
Cover of the book Radio Resource Management Using Geometric Water-Filling by Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H. Rhoads
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy