Error Estimates for Well-Balanced Schemes on Simple Balance Laws

One-Dimensional Position-Dependent Models

Nonfiction, Science & Nature, Mathematics, Number Systems, Differential Equations
Cover of the book Error Estimates for Well-Balanced Schemes on Simple Balance Laws by Debora Amadori, Laurent Gosse, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Debora Amadori, Laurent Gosse ISBN: 9783319247854
Publisher: Springer International Publishing Publication: October 23, 2015
Imprint: Springer Language: English
Author: Debora Amadori, Laurent Gosse
ISBN: 9783319247854
Publisher: Springer International Publishing
Publication: October 23, 2015
Imprint: Springer
Language: English

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.

More books from Springer International Publishing

Cover of the book The Himalayan Border Region by Debora Amadori, Laurent Gosse
Cover of the book Chicxulub: The Impact and Tsunami by Debora Amadori, Laurent Gosse
Cover of the book Electromigration Inside Logic Cells by Debora Amadori, Laurent Gosse
Cover of the book Information Visualization by Debora Amadori, Laurent Gosse
Cover of the book Global Phenomena and Social Sciences by Debora Amadori, Laurent Gosse
Cover of the book To Be Born by Debora Amadori, Laurent Gosse
Cover of the book Moral Strata by Debora Amadori, Laurent Gosse
Cover of the book Search Based Software Engineering by Debora Amadori, Laurent Gosse
Cover of the book Assembling and Supplying the ISS by Debora Amadori, Laurent Gosse
Cover of the book Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems by Debora Amadori, Laurent Gosse
Cover of the book Symmetric Cryptographic Protocols by Debora Amadori, Laurent Gosse
Cover of the book Interactive Mobile Communication Technologies and Learning by Debora Amadori, Laurent Gosse
Cover of the book Lightweight Cryptography for Security and Privacy by Debora Amadori, Laurent Gosse
Cover of the book Connecting Women by Debora Amadori, Laurent Gosse
Cover of the book The Philosophy of Mathematics Education Today by Debora Amadori, Laurent Gosse
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy