Ergodic Theory and Negative Curvature

CIRM Jean-Morlet Chair, Fall 2013

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Geometry
Cover of the book Ergodic Theory and Negative Curvature by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319430591
Publisher: Springer International Publishing Publication: December 15, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319430591
Publisher: Springer International Publishing
Publication: December 15, 2017
Imprint: Springer
Language: English

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. 

The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. 

The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.

More books from Springer International Publishing

Cover of the book Geometry of Manifolds with Non-negative Sectional Curvature by
Cover of the book Convergence and Summability of Fourier Transforms and Hardy Spaces by
Cover of the book Foundations of Civil Justice by
Cover of the book Analysing Inequalities in Germany by
Cover of the book Handbook of Marketing Decision Models by
Cover of the book High Performance Computer Applications by
Cover of the book Membrane Computing by
Cover of the book GeNeDis 2014 by
Cover of the book High Jet Multiplicity Physics at the LHC by
Cover of the book The Social Developmental Construction of Violence and Intergroup Conflict by
Cover of the book REFAG 2014 by
Cover of the book Models, Algorithms and Technologies for Network Analysis by
Cover of the book Encrypted Email by
Cover of the book RNA and DNA Diagnostics by
Cover of the book A Dynamical Perspective on the ɸ4 Model by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy