Epitaxial Growth of Complex Metal Oxides

Nonfiction, Science & Nature, Technology, Metallurgy, Engineering, Chemical & Biochemical
Cover of the book Epitaxial Growth of Complex Metal Oxides by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781782422556
Publisher: Elsevier Science Publication: May 14, 2015
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9781782422556
Publisher: Elsevier Science
Publication: May 14, 2015
Imprint: Woodhead Publishing
Language: English

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes.

Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three.

  • Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes
  • Examines the techniques used in epitaxial thin film growth
  • Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes.

Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three.

More books from Elsevier Science

Cover of the book Mineral Wool by
Cover of the book Energy and Sea Power by
Cover of the book Fundamentals of Metallurgy by
Cover of the book Current Approaches to Occupational Health by
Cover of the book Contemporary Neurology by
Cover of the book Joe Celko's SQL for Smarties by
Cover of the book Neurological Emergencies by
Cover of the book Applications of Nanocomposite Materials in Orthopedics by
Cover of the book Acrylamide and Other Hazardous Compounds in Heat-Treated Foods by
Cover of the book Understanding Virtual Reality by
Cover of the book Basic Methods in Molecular Biology by
Cover of the book Modelling and Control in Biomedical Systems 2006 by
Cover of the book International Review of Cell and Molecular Biology by
Cover of the book Strategies and Tactics in Organic Synthesis by
Cover of the book Computers as Components by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy