Emerging Syntheses In Science

Nonfiction, Science & Nature, Science, Physics, General Physics
Cover of the book Emerging Syntheses In Science by David Pines, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: David Pines ISBN: 9780429972225
Publisher: CRC Press Publication: March 5, 2018
Imprint: CRC Press Language: English
Author: David Pines
ISBN: 9780429972225
Publisher: CRC Press
Publication: March 5, 2018
Imprint: CRC Press
Language: English

Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Evolution of self-replicating macromolecules through natural selection is a dynamically ordered process. Two concepts are introduced to describe the physical regularity of macromolecular evolution: sequence space and quasi-species. Natural selection means localization of a mutant distribution in sequence space. This localized distribution, called the quasi-species, is centered around a master sequence (or a degenerate set), that the biologist would call the wild-type. The self-ordering of such a system is an essential consequence of its formation through self-reproduction of its macromolecular consti tuents, a process that in the dynamical equations expresses itself by positive diagonal coefficients called selective values. The theory describes how population numbers of wild type and mutants are related to the distribution of selective values, that is to say, how value topography maps into population topography. For selectively (nearly) neutral mutants appearing in the quasi- species distribution, population numbers are greatly enhanced as compared to those of disadvantageous mutants, even more so in continuous domains of such selectively valuable mutants. As a consequence, mutants far distant from the wild type may occur because they are produced with the help of highly populated, less distant precursors. Since values are cohesively distributed, like mountains on earth, and since their positions are multiply connected in the high-dimensional sequence space, the overpopulation of (nearly) neural mutants provides guidance for the evolutionary process. Localization in sequence space, subject to a threshold in the fidelity of reproduction, is steadily challenged until an optimal state is reached. The model has been designed according to experimentally determined properties of self-replicating molecules. The conclusions reached from the theoretical models can be used to construct machines that provide optimal conditions for the evolution of functional macromolecules.

More books from CRC Press

Cover of the book Computers, Software Engineering, and Digital Devices by David Pines
Cover of the book Ecological Risk Assessment by David Pines
Cover of the book Corporate Defense and the Value Preservation Imperative by David Pines
Cover of the book Field Sampling by David Pines
Cover of the book Organic Photovoltaics by David Pines
Cover of the book Electronically Stored Information by David Pines
Cover of the book Real-time 3D Character Animation with Visual C++ by David Pines
Cover of the book Post-Earthquake Fire Analysis in Urban Structures by David Pines
Cover of the book Increasing Management Relevance and Competitiveness by David Pines
Cover of the book Photovoltaic Engineering Handbook by David Pines
Cover of the book Fiber-Optic Fabry-Perot Sensors by David Pines
Cover of the book Handbook of Growth Factors (1994) by David Pines
Cover of the book Predictive Inference by David Pines
Cover of the book Manual of Purpose-Made Woodworking Joinery by David Pines
Cover of the book The New MRCPsych Paper II Practice MCQs and EMIs by David Pines
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy