Elgenfunction Expansions Associated with Second Order Differential Equations

Nonfiction, Science & Nature, Mathematics
Cover of the book Elgenfunction Expansions Associated with Second Order Differential Equations by E. C. Titchmarsh, Read Books Ltd.
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: E. C. Titchmarsh ISBN: 9781446545355
Publisher: Read Books Ltd. Publication: March 23, 2011
Imprint: Camp Press Language: English
Author: E. C. Titchmarsh
ISBN: 9781446545355
Publisher: Read Books Ltd.
Publication: March 23, 2011
Imprint: Camp Press
Language: English

The idea of expanding an arbitrary function in terms of the solutions of a second-order differential equation goes back to the time of Sturm and Liouville, more than a hundred years ago. The first satisfactory proofs were constructed by various authors early in the twentieth century. Later, a general theory of the singular cases was given by Weyl, who-based i on the theory of integral equations. An alternative method, proceeding via the general theory of linear operators in Hilbert space, is to be found in the treatise by Stone on this subject. Here I have adopted still another method. Proofs of these expansions by means of contour integration and the calculus of residues were given by Cauchy, and this method has been used by several authors in the ordinary Sturm-Liouville case. It is applied here to the general singular case. It is thus possible to avoid both the theory of integral equations and the general theory of linear operators, though of course we are sometimes doing no more than adapt the latter theory to the particular case considered. The ordinary Sturm-Liouville expansion is now well known. I therefore dismiss it as rapidly as possible, and concentrate on the singular cases, a class which seems to include all the most interesting examples. In order to present a clear-cut theory in a reasonable space, I have had to reject firmly all generalizations. Many of the arguments used extend quite easily to other cases, such as that of two simultaneous first-order equations. It seems that physicists are interested in some aspects of these questions. If any physicist finds here anything that he wishes to know, I shall indeed be delighted but it is to mathematicians that the book is addressed. I believe in the future of mathematics for physicists, but it seems desirable that a writer on this subject should understand physics as well as mathematics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The idea of expanding an arbitrary function in terms of the solutions of a second-order differential equation goes back to the time of Sturm and Liouville, more than a hundred years ago. The first satisfactory proofs were constructed by various authors early in the twentieth century. Later, a general theory of the singular cases was given by Weyl, who-based i on the theory of integral equations. An alternative method, proceeding via the general theory of linear operators in Hilbert space, is to be found in the treatise by Stone on this subject. Here I have adopted still another method. Proofs of these expansions by means of contour integration and the calculus of residues were given by Cauchy, and this method has been used by several authors in the ordinary Sturm-Liouville case. It is applied here to the general singular case. It is thus possible to avoid both the theory of integral equations and the general theory of linear operators, though of course we are sometimes doing no more than adapt the latter theory to the particular case considered. The ordinary Sturm-Liouville expansion is now well known. I therefore dismiss it as rapidly as possible, and concentrate on the singular cases, a class which seems to include all the most interesting examples. In order to present a clear-cut theory in a reasonable space, I have had to reject firmly all generalizations. Many of the arguments used extend quite easily to other cases, such as that of two simultaneous first-order equations. It seems that physicists are interested in some aspects of these questions. If any physicist finds here anything that he wishes to know, I shall indeed be delighted but it is to mathematicians that the book is addressed. I believe in the future of mathematics for physicists, but it seems desirable that a writer on this subject should understand physics as well as mathematics.

More books from Read Books Ltd.

Cover of the book A Woman's Burden by E. C. Titchmarsh
Cover of the book A Wanderer in Venice by E. C. Titchmarsh
Cover of the book The Contribution of Sociology to Social Work by E. C. Titchmarsh
Cover of the book India - A Plea For Understanding by E. C. Titchmarsh
Cover of the book Small Holding And Cottage Gardens by E. C. Titchmarsh
Cover of the book Indian Thoughts And Its Development by E. C. Titchmarsh
Cover of the book Italian Organ Music - A Classic Article on the History of Italian Organ Compositions by E. C. Titchmarsh
Cover of the book The Horse Shoer's Companion and Guide for the Management and Cure of Horse Feet with Instructions on Diseases of the Feet, Ways of Holding While being Shod, on the Choice of Feet, Stabling, Etc. by E. C. Titchmarsh
Cover of the book The Flying Death - A Story in Three Writings and a Telegram (Cryptofiction Classics - Weird Tales of Strange Creatures) by E. C. Titchmarsh
Cover of the book Some Short Stories by Lord Dunsany (Fantasy and Horror Classics) by E. C. Titchmarsh
Cover of the book Glinka by E. C. Titchmarsh
Cover of the book How to Grow Melons - Three Articles by E. C. Titchmarsh
Cover of the book Physique And Character by E. C. Titchmarsh
Cover of the book The Forest, the Jungle, and the Prairie - Or, Tales of Adventure and Enterprise in Pursuit of Wild Animals by E. C. Titchmarsh
Cover of the book Daddy-Long-Legs by E. C. Titchmarsh
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy