Dispersion Decay and Scattering Theory

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, Mathematics, Applied, Quantum Theory
Cover of the book Dispersion Decay and Scattering Theory by Alexander Komech, Elena Kopylova, Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Komech, Elena Kopylova ISBN: 9781118382882
Publisher: Wiley Publication: August 21, 2014
Imprint: Wiley Language: English
Author: Alexander Komech, Elena Kopylova
ISBN: 9781118382882
Publisher: Wiley
Publication: August 21, 2014
Imprint: Wiley
Language: English

A simplified, yet rigorous treatment of scattering theory methods and their applications

Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations.

The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included.

Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A simplified, yet rigorous treatment of scattering theory methods and their applications

Dispersion Decay and Scattering Theory provides thorough, easy-to-understand guidance on the application of scattering theory methods to modern problems in mathematics, quantum physics, and mathematical physics. Introducing spectral methods with applications to dispersion time-decay and scattering theory, this book presents, for the first time, the Agmon-Jensen-Kato spectral theory for the Schr?dinger equation, extending the theory to the Klein-Gordon equation. The dispersion decay plays a crucial role in the modern application to asymptotic stability of solitons of nonlinear Schr?dinger and Klein-Gordon equations.

The authors clearly explain the fundamental concepts and formulas of the Schr?dinger operators, discuss the basic properties of the Schr?dinger equation, and offer in-depth coverage of Agmon-Jensen-Kato theory of the dispersion decay in the weighted Sobolev norms. The book also details the application of dispersion decay to scattering and spectral theories, the scattering cross section, and the weighted energy decay for 3D Klein-Gordon and wave equations. Complete streamlined proofs for key areas of the Agmon-Jensen-Kato approach, such as the high-energy decay of the resolvent and the limiting absorption principle are also included.

Dispersion Decay and Scattering Theory is a suitable book for courses on scattering theory, partial differential equations, and functional analysis at the graduate level. The book also serves as an excellent resource for researchers, professionals, and academics in the fields of mathematics, mathematical physics, and quantum physics who would like to better understand scattering theory and partial differential equations and gain problem-solving skills in diverse areas, from high-energy physics to wave propagation and hydrodynamics.

More books from Wiley

Cover of the book HTML5 Games by Alexander Komech, Elena Kopylova
Cover of the book How To Talk To Absolutely Anyone by Alexander Komech, Elena Kopylova
Cover of the book The Five Dysfunctions of a Team by Alexander Komech, Elena Kopylova
Cover of the book The Valuation of Financial Companies by Alexander Komech, Elena Kopylova
Cover of the book Erneuerbare Energie by Alexander Komech, Elena Kopylova
Cover of the book Clinical Governance by Alexander Komech, Elena Kopylova
Cover of the book Industrial High Pressure Applications by Alexander Komech, Elena Kopylova
Cover of the book Turbulent Multiphase Flows with Heat and Mass Transfer by Alexander Komech, Elena Kopylova
Cover of the book The Listening Leader by Alexander Komech, Elena Kopylova
Cover of the book Mass Spectrometry in Drug Metabolism and Disposition by Alexander Komech, Elena Kopylova
Cover of the book The Biogeochemical Cycle of Silicon in the Ocean by Alexander Komech, Elena Kopylova
Cover of the book Fuel and Combustion Systems Safety by Alexander Komech, Elena Kopylova
Cover of the book Technology, Manufacturing and Grid Connection of Photovoltaic Solar Cells by Alexander Komech, Elena Kopylova
Cover of the book Modern Clinic Design by Alexander Komech, Elena Kopylova
Cover of the book High-Density Lipoproteins by Alexander Komech, Elena Kopylova
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy