Discovery of Single Top Quark Production

Nonfiction, Science & Nature, Science, Physics, Nuclear Physics, Biological Sciences, Molecular Physics
Cover of the book Discovery of Single Top Quark Production by Dag Gillberg, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Dag Gillberg ISBN: 9781441977991
Publisher: Springer New York Publication: January 22, 2011
Imprint: Springer Language: English
Author: Dag Gillberg
ISBN: 9781441977991
Publisher: Springer New York
Publication: January 22, 2011
Imprint: Springer
Language: English

The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies.

Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years.

This thesis presents the first discovery of single top quark production.  It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as “single top quark production”, which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background.

This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies.

Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years.

This thesis presents the first discovery of single top quark production.  It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as “single top quark production”, which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background.

This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada.

More books from Springer New York

Cover of the book Traditional Organized Crime in the Modern World by Dag Gillberg
Cover of the book Electrothermal Frequency References in Standard CMOS by Dag Gillberg
Cover of the book Pathology of Melanocytic Nevi and Malignant Melanoma by Dag Gillberg
Cover of the book Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact by Dag Gillberg
Cover of the book Studies in Phase Space Analysis with Applications to PDEs by Dag Gillberg
Cover of the book Magnetic Resonance Elastography by Dag Gillberg
Cover of the book Early Fraction Learning by Dag Gillberg
Cover of the book Energy-Efficient Communication Processors by Dag Gillberg
Cover of the book Traumatic Brain Injury by Dag Gillberg
Cover of the book Machine Tool Vibrations and Cutting Dynamics by Dag Gillberg
Cover of the book Graphs on Surfaces by Dag Gillberg
Cover of the book Automatic Malware Analysis by Dag Gillberg
Cover of the book Dermatology by Dag Gillberg
Cover of the book Pervasive Health Knowledge Management by Dag Gillberg
Cover of the book Molecular Genetics of Inflammatory Bowel Disease by Dag Gillberg
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy