Direct Thermochemical Liquefaction for Energy Applications

Nonfiction, Science & Nature, Technology, Environmental, Power Resources
Cover of the book Direct Thermochemical Liquefaction for Energy Applications by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081010259
Publisher: Elsevier Science Publication: November 14, 2017
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780081010259
Publisher: Elsevier Science
Publication: November 14, 2017
Imprint: Woodhead Publishing
Language: English

Direct Thermochemical Liquefaction for Energy Applications presents the state-of-the-art of the value chains associated with these biomass conversion technologies. It covers multiple feedstock availability and feedstock composition impact on process chemistry and product quality and composition. Expert authors from around the world explore co-processing benefits, process parameters, implementation and scaling, upgrading to drop-in liquid biofuels or integration into existing petrochemical refinery infrastructure.

Finally, these topics are put into a sustainability perspective by establishing an LCA framework for this type of process. Its focus on implementation based on the most comprehensive knowledge makes this book particularly useful for researchers and graduate students from all sorts of background working in the field of biomass and biofuels. It is also a valuable reference for engineers working to commercialize DTL technologies, engineering specialists designing process equipment, refinery professionals and developers.

  • Focuses on implementation and scaling of direct thermochemical liquefaction technologies for biomass conversion into biofuels
  • Covers the state-of-the-art of the technologies, as well as technical and sustainability implementation aspects
  • Includes new approaches and concepts developed around the world within the different DTL technologies
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Direct Thermochemical Liquefaction for Energy Applications presents the state-of-the-art of the value chains associated with these biomass conversion technologies. It covers multiple feedstock availability and feedstock composition impact on process chemistry and product quality and composition. Expert authors from around the world explore co-processing benefits, process parameters, implementation and scaling, upgrading to drop-in liquid biofuels or integration into existing petrochemical refinery infrastructure.

Finally, these topics are put into a sustainability perspective by establishing an LCA framework for this type of process. Its focus on implementation based on the most comprehensive knowledge makes this book particularly useful for researchers and graduate students from all sorts of background working in the field of biomass and biofuels. It is also a valuable reference for engineers working to commercialize DTL technologies, engineering specialists designing process equipment, refinery professionals and developers.

More books from Elsevier Science

Cover of the book Summary of International Energy Research and Development Activities 1974-1976 by
Cover of the book Annual Reports on NMR Spectroscopy by
Cover of the book Geomorphology and Volcanology of Costa Rica by
Cover of the book Lake Bonneville: A Scientific Update by
Cover of the book Cord Blood Stem Cells Medicine by
Cover of the book Annual Reports in Computational Chemistry by
Cover of the book Phase Transitions in Foods by
Cover of the book New Perspectives in Forensic Human Skeletal Identification by
Cover of the book Forensic Ecogenomics by
Cover of the book A Synopsis of Ophthalmology by
Cover of the book Pulp and Paper Industry by
Cover of the book Modelling Microorganisms in Food by
Cover of the book Predictive Analytics and Data Mining by
Cover of the book Red Cell Development by
Cover of the book Advances in Immunology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy