Differential Geometry and Kinematics of Continua

Nonfiction, Science & Nature, Mathematics, Geometry, Applied
Cover of the book Differential Geometry and Kinematics of Continua by John D Clayton, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John D Clayton ISBN: 9789814616058
Publisher: World Scientific Publishing Company Publication: July 31, 2014
Imprint: WSPC Language: English
Author: John D Clayton
ISBN: 9789814616058
Publisher: World Scientific Publishing Company
Publication: July 31, 2014
Imprint: WSPC
Language: English

This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided.

Contents:

  • Introduction
  • Geometric Fundamentals
  • Kinematics of Integrable Deformation
  • Geometry of Anholonomic Deformation
  • Kinematics of Anholonomic Deformation
  • List of Symbols
  • Bibliography
  • Index

Readership: Researchers in mathematical physics and engineering mechanics.
Key Features:

  • Presentation of mathematical operations and examples in anholonomic space associated with a multiplicative decomposition (e.g., of the gradient of motion) is more general and comprehensive than any given elsewhere and contains original ideas and new results
  • Line-by-line derivations are frequent and exhaustive, to facilitate practice and enable verification of final results
  • General analysis is given in generic curvilinear coordinates; particular sections deal with applications and examples in Cartesian, cylindrical, spherical, and convected coordinates. Indicial and direct notations of tensor calculus enable connections with historic and modern literature, respectively
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides definitions and mathematical derivations of fundamental relationships of tensor analysis encountered in nonlinear continuum mechanics and continuum physics, with a focus on finite deformation kinematics and classical differential geometry. Of particular interest are anholonomic aspects arising from a multiplicative decomposition of the deformation gradient into two terms, neither of which in isolation necessarily obeys the integrability conditions satisfied by the gradient of a smooth vector field. The concise format emphasizes clarity and ease of reference, and detailed step-by-step derivations of most analytical results are provided.

Contents:

Readership: Researchers in mathematical physics and engineering mechanics.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Statistical Physics by John D Clayton
Cover of the book Priorities and Pathways in Services Reform — Part II by John D Clayton
Cover of the book Analytical Applications of Ionic Liquids by John D Clayton
Cover of the book An Introductory Global CO2 Model by John D Clayton
Cover of the book State, Society and National Security by John D Clayton
Cover of the book 50 Years of Urban Planning in Singapore by John D Clayton
Cover of the book Developing Countries in the World Economy by John D Clayton
Cover of the book Black Holes, Cosmology and Extra Dimensions by John D Clayton
Cover of the book Towards Ultimate Understanding of the Universe by John D Clayton
Cover of the book Compound Semiconductor Bulk Materials and Characterizations by John D Clayton
Cover of the book Nuclear Radiation Interactions by John D Clayton
Cover of the book A Brief History of Economics by John D Clayton
Cover of the book Waves and Particles by John D Clayton
Cover of the book Achieving the Rare by John D Clayton
Cover of the book An Introduction to Non-Abelian Class Field Theory by John D Clayton
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy