Diagram Genus, Generators, and Applications

Nonfiction, Science & Nature, Mathematics, Combinatorics, Arithmetic, Geometry
Cover of the book Diagram Genus, Generators, and Applications by Alexander Stoimenow, CRC Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Stoimenow ISBN: 9781315359984
Publisher: CRC Press Publication: September 3, 2018
Imprint: Chapman and Hall/CRC Language: English
Author: Alexander Stoimenow
ISBN: 9781315359984
Publisher: CRC Press
Publication: September 3, 2018
Imprint: Chapman and Hall/CRC
Language: English

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ("generators"). Diagram Genus, Generators and Applications presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems.

The book begins with an introduction to the origin of knot tables and the background details, including diagrams, surfaces, and invariants. It then derives a new description of generators using Hirasawa’s algorithm and extends this description to push the compilation of knot generators one genus further to complete their classification for genus 4. Subsequent chapters cover applications of the genus 4 classification, including the braid index, polynomial invariants, hyperbolic volume, and Vassiliev invariants. The final chapter presents further research related to generators, which helps readers see applications of generators in a broader context.

More books from CRC Press

Cover of the book Basic Manufacturing by Alexander Stoimenow
Cover of the book Automotive Computer Controlled Systems by Alexander Stoimenow
Cover of the book The Garbage Collection Handbook by Alexander Stoimenow
Cover of the book Sheet Metal Forming Optimization by Alexander Stoimenow
Cover of the book Geometric and Engineering Drawing 3E by Alexander Stoimenow
Cover of the book Implementing IT in Construction by Alexander Stoimenow
Cover of the book Story and Simulations for Serious Games by Alexander Stoimenow
Cover of the book Composite Materials Handbook-MIL 17, Volume III by Alexander Stoimenow
Cover of the book Sustainability through Energy-Efficient Buildings by Alexander Stoimenow
Cover of the book Human Factors and Ergonomics of Prehospital Emergency Care by Alexander Stoimenow
Cover of the book Mammalian Egg Transfer by Alexander Stoimenow
Cover of the book Therapeutic Applications of Adenoviruses by Alexander Stoimenow
Cover of the book Environmental Design of Urban Buildings by Alexander Stoimenow
Cover of the book Reinforced and Prestressed Concrete Design to EC2 by Alexander Stoimenow
Cover of the book Innovation in Small Construction Firms by Alexander Stoimenow
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy