Device Applications of Silicon Nanocrystals and Nanostructures

Nonfiction, Science & Nature, Technology, Nanotechnology, Material Science
Cover of the book Device Applications of Silicon Nanocrystals and Nanostructures by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780387786896
Publisher: Springer US Publication: December 11, 2008
Imprint: Springer Language: English
Author:
ISBN: 9780387786896
Publisher: Springer US
Publication: December 11, 2008
Imprint: Springer
Language: English

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Recent developments in the technology of silicon nanocrystals and silicon nanostructures, where quantum-size effects are important, are systematically described including examples of device applications. Due to the strong quantum confinement effect, the material properties are freed from the usual indirect- or direct-bandgap regime, and the optical, electrical, thermal, and chemical properties of these nanocrystalline and nanostructured semiconductors are drastically changed from those of bulk silicon. In addition to efficient visible luminescence, various other useful material functions are induced in nanocrystalline silicon and periodic silicon nanostructures. Some novel devices and applications, in fields such as photonics (electroluminescence diode, microcavity, and waveguide), electronics (single-electron device, spin transistor, nonvolatile memory, and ballistic electron emitter), acoustics, and biology, have been developed by the use of these quantum-induced functions in ways different from the conventional scaling principle for ULSI.

More books from Springer US

Cover of the book Poisson Point Processes by
Cover of the book Severe Learning Disabilities and Challenging Behaviours by
Cover of the book Cell Biology of Extracellular Matrix by
Cover of the book Child and Infant Pain by
Cover of the book Multimedia Systems and Techniques by
Cover of the book Clinical Neuropsychological Assessment by
Cover of the book Comprehensive Handbook of Psychopathology by
Cover of the book Analytical Sedimentology by
Cover of the book Effects of Climate Change and Variability on Agricultural Production Systems by
Cover of the book Risk Evaluation and Management by
Cover of the book Multiple Criteria Analysis in Strategic Siting Problems by
Cover of the book Biology of Brain Dysfunction by
Cover of the book Cellular Communication in Plants by
Cover of the book Building Sustainable Information Systems by
Cover of the book Productive Multivocality in the Analysis of Group Interactions by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy