Descriptive Complexity, Canonisation, and Definable Graph Structure Theory

Nonfiction, Science & Nature, Mathematics, Logic, Computers, General Computing
Cover of the book Descriptive Complexity, Canonisation, and Definable Graph Structure Theory by Martin Grohe, Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Martin Grohe ISBN: 9781108227988
Publisher: Cambridge University Press Publication: August 17, 2017
Imprint: Cambridge University Press Language: English
Author: Martin Grohe
ISBN: 9781108227988
Publisher: Cambridge University Press
Publication: August 17, 2017
Imprint: Cambridge University Press
Language: English

Descriptive complexity theory establishes a connection between the computational complexity of algorithmic problems (the computational resources required to solve the problems) and their descriptive complexity (the language resources required to describe the problems). This groundbreaking book approaches descriptive complexity from the angle of modern structural graph theory, specifically graph minor theory. It develops a 'definable structure theory' concerned with the logical definability of graph theoretic concepts such as tree decompositions and embeddings. The first part starts with an introduction to the background, from logic, complexity, and graph theory, and develops the theory up to first applications in descriptive complexity theory and graph isomorphism testing. It may serve as the basis for a graduate-level course. The second part is more advanced and mainly devoted to the proof of a single, previously unpublished theorem: properties of graphs with excluded minors are decidable in polynomial time if, and only if, they are definable in fixed-point logic with counting.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Descriptive complexity theory establishes a connection between the computational complexity of algorithmic problems (the computational resources required to solve the problems) and their descriptive complexity (the language resources required to describe the problems). This groundbreaking book approaches descriptive complexity from the angle of modern structural graph theory, specifically graph minor theory. It develops a 'definable structure theory' concerned with the logical definability of graph theoretic concepts such as tree decompositions and embeddings. The first part starts with an introduction to the background, from logic, complexity, and graph theory, and develops the theory up to first applications in descriptive complexity theory and graph isomorphism testing. It may serve as the basis for a graduate-level course. The second part is more advanced and mainly devoted to the proof of a single, previously unpublished theorem: properties of graphs with excluded minors are decidable in polynomial time if, and only if, they are definable in fixed-point logic with counting.

More books from Cambridge University Press

Cover of the book Women, Work, and Clothes in the Eighteenth-Century Novel by Martin Grohe
Cover of the book Bioethics by Martin Grohe
Cover of the book Theatre and Governance in Britain, 1500–1900 by Martin Grohe
Cover of the book Public Reason Confucianism by Martin Grohe
Cover of the book Party Autonomy in Private International Law by Martin Grohe
Cover of the book The Sole Spokesman by Martin Grohe
Cover of the book Ecclesiology and Theosis in the Gospel of John by Martin Grohe
Cover of the book Agreements by Martin Grohe
Cover of the book Chomsky by Martin Grohe
Cover of the book A Concise Text on Advanced Linear Algebra by Martin Grohe
Cover of the book The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations by Martin Grohe
Cover of the book Probability and Computing by Martin Grohe
Cover of the book Fertility Counseling by Martin Grohe
Cover of the book Guano and the Opening of the Pacific World by Martin Grohe
Cover of the book Discrimination Laundering by Martin Grohe
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy