Decision Forests for Computer Vision and Medical Image Analysis

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Decision Forests for Computer Vision and Medical Image Analysis by , Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781447149293
Publisher: Springer London Publication: January 30, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781447149293
Publisher: Springer London
Publication: January 30, 2013
Imprint: Springer
Language: English

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

More books from Springer London

Cover of the book Air Pollution and Health Effects by
Cover of the book MRI from A to Z by
Cover of the book Exercise Cardiopulmonary Function in Cardiac Patients by
Cover of the book Python Programming Fundamentals by
Cover of the book 3D Video and Its Applications by
Cover of the book Syngas from Waste by
Cover of the book Modern Hip Resurfacing by
Cover of the book Electrocatalysis in Fuel Cells by
Cover of the book 21st Century Kinematics by
Cover of the book The Embryo by
Cover of the book Crowd Simulation by
Cover of the book High-Performance Scientific Computing by
Cover of the book Management of Myocardial Reperfusion Injury by
Cover of the book Image Registration by
Cover of the book Prostatic Obstruction by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy