Decision Forests for Computer Vision and Medical Image Analysis

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Decision Forests for Computer Vision and Medical Image Analysis by , Springer London
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781447149293
Publisher: Springer London Publication: January 30, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781447149293
Publisher: Springer London
Publication: January 30, 2013
Imprint: Springer
Language: English

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

More books from Springer London

Cover of the book Chronic Venous Insufficiency by
Cover of the book Dermatology in Clinical Practice by
Cover of the book Pharmacological Treatment of Acute Coronary Syndromes by
Cover of the book Rational Number Theory in the 20th Century by
Cover of the book Modelling and Controlling Hydropower Plants by
Cover of the book Managing Common Interventional Radiology Complications by
Cover of the book Dementia in Clinical Practice: A Neurological Perspective by
Cover of the book Histopathology Reporting by
Cover of the book Sensing and Systems in Pervasive Computing by
Cover of the book Medical Imaging in Clinical Trials by
Cover of the book Designing User Friendly Augmented Work Environments by
Cover of the book Type 1 Diabetes by
Cover of the book Electronic Visualisation in Arts and Culture by
Cover of the book Secondary Mitral Valve Regurgitation by
Cover of the book Fundamentals of Digital Manufacturing Science by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy