Dark Web

Exploring and Data Mining the Dark Side of the Web

Business & Finance, Industries & Professions, Information Management, Nonfiction, Computers, Database Management, General Computing
Cover of the book Dark Web by Hsinchun Chen, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hsinchun Chen ISBN: 9781461415572
Publisher: Springer New York Publication: December 17, 2011
Imprint: Springer Language: English
Author: Hsinchun Chen
ISBN: 9781461415572
Publisher: Springer New York
Publication: December 17, 2011
Imprint: Springer
Language: English

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace.

This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "ALL" web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace.

This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

More books from Springer New York

Cover of the book Blood in Motion by Hsinchun Chen
Cover of the book The Marmoset Brain in Stereotaxic Coordinates by Hsinchun Chen
Cover of the book Treatment of Chronic Pain by Interventional Approaches by Hsinchun Chen
Cover of the book Regulated Grammars and Automata by Hsinchun Chen
Cover of the book Analog IC Reliability in Nanometer CMOS by Hsinchun Chen
Cover of the book Statistical Methods for Ranking Data by Hsinchun Chen
Cover of the book Advanced DPA Theory and Practice by Hsinchun Chen
Cover of the book Unpacking the Collection by Hsinchun Chen
Cover of the book Attention and Self-Regulation by Hsinchun Chen
Cover of the book Frozen Section Library: Lung by Hsinchun Chen
Cover of the book Dental Pulp Stem Cells by Hsinchun Chen
Cover of the book Cardiac Transplantation by Hsinchun Chen
Cover of the book Karl Jaspers’ Philosophy and Psychopathology by Hsinchun Chen
Cover of the book The Psychology of Physical Symptoms by Hsinchun Chen
Cover of the book Fundamentals of Space Medicine by Hsinchun Chen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy