Critical Phenomena in Loop Models

Nonfiction, Science & Nature, Science, Physics, Mathematical Physics, General Physics
Cover of the book Critical Phenomena in Loop Models by Adam Nahum, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Adam Nahum ISBN: 9783319064079
Publisher: Springer International Publishing Publication: October 1, 2014
Imprint: Springer Language: English
Author: Adam Nahum
ISBN: 9783319064079
Publisher: Springer International Publishing
Publication: October 1, 2014
Imprint: Springer
Language: English

When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles.
'Loop models' provide a unifying geometric language for problems of this kind.
This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions.
All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

When close to a continuous phase transition, many physical systems can usefully be mapped to ensembles of fluctuating loops, which might represent for example polymer rings, or line defects in a lattice magnet, or worldlines of quantum particles.
'Loop models' provide a unifying geometric language for problems of this kind.
This thesis aims to extend this language in two directions. The first part of the thesis tackles ensembles of loops in three dimensions, and relates them to the statistical properties of line defects in disordered media and to critical phenomena in two-dimensional quantum magnets. The second part concerns two-dimensional loop models that lie outside the standard paradigms: new types of critical point are found, and new results given for the universal properties of polymer collapse transitions in two dimensions.
All of these problems are shown to be related to sigma models on complex or real projective space, CP^{n−1} or RP^{n−1} -- in some cases in a 'replica' limit -- and this thesis is also an in-depth investigation of critical behaviour in these field theories.

More books from Springer International Publishing

Cover of the book Advances in Computational Intelligence by Adam Nahum
Cover of the book Early Nutrition and Lifestyle Factors by Adam Nahum
Cover of the book Progress in Turbulence VII by Adam Nahum
Cover of the book Cytology of the Mediastinum and Gut Via Endoscopic Ultrasound-Guided Aspiration by Adam Nahum
Cover of the book Evacuation Modeling Trends by Adam Nahum
Cover of the book STRATI 2013 by Adam Nahum
Cover of the book Transparent Ceramics by Adam Nahum
Cover of the book Japanese at Work by Adam Nahum
Cover of the book Re-Visioning Education in Africa by Adam Nahum
Cover of the book Politics and Aesthetics of the Female Form, 1908-1918 by Adam Nahum
Cover of the book The Ordinary Presidency of Donald J. Trump by Adam Nahum
Cover of the book A Civil-Military Response to Hybrid Threats by Adam Nahum
Cover of the book Universal Biology after Aristotle, Kant, and Hegel by Adam Nahum
Cover of the book Digital Signal Processing and Spectral Analysis for Scientists by Adam Nahum
Cover of the book Cognitive Radio and Networking for Heterogeneous Wireless Networks by Adam Nahum
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy