Many SaaS providers nowadays want to leverage the cloud’s capabilities also for their existing applications, for example, to enable sound scalability and cost-effectiveness. This thesis provides the approach CloudMIG that supports SaaS providers to migrate those applications to IaaS and PaaS-based cloud environments. CloudMIG consists of a step-by-step process and focuses on two core components. (1) Restrictions imposed by specific cloud environments (so-called cloud environment constraints (CECs)), such as a limited file system access or forbidden method calls, can be validated by an automatic conformance checking approach. (2) A cloud deployment option (CDO) determines which cloud environment, cloud resource types, deployment architecture, and runtime reconfiguration rules for exploiting a cloud’s elasticity should be used. The implied performance and costs can differ in orders of magnitude. CDOs can be automatically optimized with the help of our simulation-based genetic algorithm CDOXplorer. Extensive lab experiments and an experiment in an industrial context show CloudMIG’s applicability and the excellent performance of its two core components.
Many SaaS providers nowadays want to leverage the cloud’s capabilities also for their existing applications, for example, to enable sound scalability and cost-effectiveness. This thesis provides the approach CloudMIG that supports SaaS providers to migrate those applications to IaaS and PaaS-based cloud environments. CloudMIG consists of a step-by-step process and focuses on two core components. (1) Restrictions imposed by specific cloud environments (so-called cloud environment constraints (CECs)), such as a limited file system access or forbidden method calls, can be validated by an automatic conformance checking approach. (2) A cloud deployment option (CDO) determines which cloud environment, cloud resource types, deployment architecture, and runtime reconfiguration rules for exploiting a cloud’s elasticity should be used. The implied performance and costs can differ in orders of magnitude. CDOs can be automatically optimized with the help of our simulation-based genetic algorithm CDOXplorer. Extensive lab experiments and an experiment in an industrial context show CloudMIG’s applicability and the excellent performance of its two core components.