Computing Qualitatively Correct Approximations of Balance Laws

Exponential-Fit, Well-Balanced and Asymptotic-Preserving

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Differential Equations
Cover of the book Computing Qualitatively Correct Approximations of Balance Laws by Laurent Gosse, Springer Milan
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Laurent Gosse ISBN: 9788847028920
Publisher: Springer Milan Publication: March 30, 2013
Imprint: Springer Language: English
Author: Laurent Gosse
ISBN: 9788847028920
Publisher: Springer Milan
Publication: March 30, 2013
Imprint: Springer
Language: English

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.

More books from Springer Milan

Cover of the book The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices by Laurent Gosse
Cover of the book Morality and Corporate Governance: Firm Integrity and Spheres of Justice by Laurent Gosse
Cover of the book Magnetic Resonance Spectroscopy in Multiple Sclerosis by Laurent Gosse
Cover of the book Sepsis and Organ Dysfunction by Laurent Gosse
Cover of the book Orthopedic Sports Medicine by Laurent Gosse
Cover of the book Articular Cartilage Defects of the Knee by Laurent Gosse
Cover of the book Pelvic Floor Disorders: Surgical Approach by Laurent Gosse
Cover of the book Imaging of Prosthetic Joints by Laurent Gosse
Cover of the book Robotic Surgery by Laurent Gosse
Cover of the book Endoscopic Follow-up of Digestive Anastomosis by Laurent Gosse
Cover of the book Critical Care Cardiology in the Perioperative Period by Laurent Gosse
Cover of the book Text Atlas of Practical Electrocardiography by Laurent Gosse
Cover of the book The Respiratory System in Equations by Laurent Gosse
Cover of the book Congenital Hip Disease in Adults by Laurent Gosse
Cover of the book Totally Implantable Venous Access Devices by Laurent Gosse
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy