Computer Simulation of Polymeric Materials

Applications of the OCTA System

Nonfiction, Science & Nature, Technology, Textiles & Polymers, Science, Chemistry, General Chemistry
Cover of the book Computer Simulation of Polymeric Materials by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811008153
Publisher: Springer Singapore Publication: July 30, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789811008153
Publisher: Springer Singapore
Publication: July 30, 2016
Imprint: Springer
Language: English

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

More books from Springer Singapore

Cover of the book China’s Conquest of Taiwan in the Seventeenth Century by
Cover of the book Explorations in Technology Education Research by
Cover of the book Proceedings of the Fourth International Forum on Decision Sciences by
Cover of the book International Relations and Asia’s Southern Tier by
Cover of the book Calculus for Cognitive Scientists by
Cover of the book Reflective Theory and Practice in Teacher Education by
Cover of the book The Universal Periodic Review of Southeast Asia by
Cover of the book Groundwater Pollution Risk Control from an Industrial Economics Perspective by
Cover of the book Control Engineering: MATLAB Exercises by
Cover of the book New Interpretations on the Development of China’s Non-Governmental Enterprises by
Cover of the book Digital Audio Watermarking by
Cover of the book 21st Century Skills Development Through Inquiry-Based Learning by
Cover of the book Transactions on Engineering Technologies by
Cover of the book Medical Statistics by
Cover of the book The Vienna LTE-Advanced Simulators by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy