Computer Simulation of Polymeric Materials

Applications of the OCTA System

Nonfiction, Science & Nature, Technology, Textiles & Polymers, Science, Chemistry, General Chemistry
Cover of the book Computer Simulation of Polymeric Materials by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811008153
Publisher: Springer Singapore Publication: July 30, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789811008153
Publisher: Springer Singapore
Publication: July 30, 2016
Imprint: Springer
Language: English

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

More books from Springer Singapore

Cover of the book Crossing Borders by
Cover of the book Academic Governance in the Contemporary University by
Cover of the book New Technologies in Electromagnetic Non-destructive Testing by
Cover of the book Conceptual Evolution of Newtonian and Relativistic Mechanics by
Cover of the book InCIEC 2013 by
Cover of the book Basic and Advanced Laboratory Techniques in Histopathology and Cytology by
Cover of the book Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications by
Cover of the book Private International Law by
Cover of the book Ambient Air Pollution and Health Impact in China by
Cover of the book Improving Quality of Care in Family Planning by
Cover of the book Increasing Resilience to Climate Variability and Change by
Cover of the book Software Engineering by
Cover of the book Progress in Advanced Computing and Intelligent Engineering by
Cover of the book Optically Active Polymers by
Cover of the book The Chinese Road of the Rule of Law by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy