Computer Simulation of Polymeric Materials

Applications of the OCTA System

Nonfiction, Science & Nature, Technology, Textiles & Polymers, Science, Chemistry, General Chemistry
Cover of the book Computer Simulation of Polymeric Materials by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811008153
Publisher: Springer Singapore Publication: July 30, 2016
Imprint: Springer Language: English
Author:
ISBN: 9789811008153
Publisher: Springer Singapore
Publication: July 30, 2016
Imprint: Springer
Language: English

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from "Open Computational Tool for Advanced material technology," OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.

More books from Springer Singapore

Cover of the book Flow and Transport in Subsurface Environment by
Cover of the book China’s Domestic and International Migration Development by
Cover of the book Golden Goose by
Cover of the book Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding by
Cover of the book Microbial Bioprospecting for Sustainable Development by
Cover of the book Quantitative and Qualitative Factors that Leads to Slip and Fall Incidents by
Cover of the book Coronary Imaging and Physiology by
Cover of the book Towards A Common Future by
Cover of the book School Spaces for Student Wellbeing and Learning by
Cover of the book Multiscale Transforms with Application to Image Processing by
Cover of the book Exosomes in Cardiovascular Diseases by
Cover of the book Technology and Application of Environmental and Engineering Geophysics by
Cover of the book Ambient Communications and Computer Systems by
Cover of the book South Asian Diaspora Narratives by
Cover of the book Chronic Regulatory Focus and Financial Decision-Making by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy