Computational Materials Engineering

Achieving High Accuracy and Efficiency in Metals Processing Simulations

Nonfiction, Science & Nature, Technology, Material Science, Computers, Advanced Computing, Programming, Data Modeling & Design
Cover of the book Computational Materials Engineering by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D., Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D. ISBN: 9780124167247
Publisher: Elsevier Science Publication: July 14, 2015
Imprint: Butterworth-Heinemann Language: English
Author: Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
ISBN: 9780124167247
Publisher: Elsevier Science
Publication: July 14, 2015
Imprint: Butterworth-Heinemann
Language: English

Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency.

Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales.

The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application.

  • Presents the numerical approaches for high-accuracy calculations
  • Provides researchers with essential information on the methods capable of exact representation of microstructure morphology
  • Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more
  • Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process
  • Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency.

Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales.

The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application.

More books from Elsevier Science

Cover of the book Introduction to Diffusion Tensor Imaging by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Growth Hormone Secretagogues by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Bioconjugate Techniques by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book MPEG-V by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Biomedical Texture Analysis by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Immunity to Listeria Monocytogenes by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Analysis of Marine Samples in Search of Bioactive Compounds by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book RF Circuit Design by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Texture in Food by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Advances in International Accounting by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Applications of Nanomaterials by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book New Pesticides and Soil Sensors by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Station Planning and Design by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Mathematical Methods For Physicists International Student Edition by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
Cover of the book Progress in Optics by Maciej Pietrzyk, Ph.D., Lukasz Madej, Ph.D., Lukasz Rauch, Ph.D., Danuta Szeliga, Ph.D.
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy