Compressed Sensing & Sparse Filtering

Nonfiction, Science & Nature, Technology, Electronics, Computers, Programming
Cover of the book Compressed Sensing & Sparse Filtering by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642383984
Publisher: Springer Berlin Heidelberg Publication: September 13, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783642383984
Publisher: Springer Berlin Heidelberg
Publication: September 13, 2013
Imprint: Springer
Language: English

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.

 Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.

 This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.

 Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.

 This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  

More books from Springer Berlin Heidelberg

Cover of the book Total Hip Arthroplasty by
Cover of the book Foreign Aid in China by
Cover of the book Medullary Thyroid Carcinoma by
Cover of the book NMR-Spektren richtig ausgewertet by
Cover of the book Understanding Viscoelasticity by
Cover of the book Photovoltaic Solar Energy Conversion by
Cover of the book Genetics of the Mouse by
Cover of the book Surgical Atlas of Sports Orthopaedics and Sports Traumatology by
Cover of the book Inherited Metabolic Diseases by
Cover of the book Natürliche Familienplanung heute by
Cover of the book Sustainable Asset Accumulation and Dynamic Portfolio Decisions by
Cover of the book Selling Tourism Services at a Distance by
Cover of the book Lymphohaematopoietic Growth Factors in Cancer Therapy II by
Cover of the book Signaling in Plants by
Cover of the book Functioning and Management of European Beech Ecosystems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy