Chemistry and Biochemistry of Oxygen Therapeutics

From Transfusion to Artificial Blood

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry
Cover of the book Chemistry and Biochemistry of Oxygen Therapeutics by , Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781119976202
Publisher: Wiley Publication: July 7, 2011
Imprint: Wiley Language: English
Author:
ISBN: 9781119976202
Publisher: Wiley
Publication: July 7, 2011
Imprint: Wiley
Language: English

Human blood performs many important functions including defence against disease and transport of biomolecules, but perhaps the most important is to carry oxygen – the fundamental biochemical fuel - and other blood gases around the cardiovascular system. Traditional therapies for the impairment of this function, or the rapid replacement of lost blood, have centred around blood transfusions. However scientists are developing chemicals (oxygen therapeutics, or “blood substitutes”) which have the same oxygen-carrying capability as blood and can be used as replacements for blood transfusion or to treat diseases where oxygen transport is impaired.

Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood links the underlying biochemical principles of the field with chemical and biotechnological innovations and pre-clinical development.

The first part of the book deals with the chemistry, biochemistry, physiology and toxicity of oxygen, including chapters on hemoglobin reactivity and regulation; the major cellular and physiological control mechanisms of blood flow and oxygen delivery; hemoglobin and myoglobin; nitric oxide and oxygen; and the role of reactive oxygen and nitrogen species in ischemia/reperfusion Injury.

The book then discusses medical needs for oxygen supply, including acute traumatic hemorrhage and anemia; diagnosis and treatment of haemorrhages in "non-surgical" patients; management of perioperative bleeding; oxygenation in the preterm neonate; ischemia

normobaric and hyperbaric oxygen therapy for ischemic stroke and other neurological conditions; and transfusion therapy in β thalassemia and sickle cell disease

Finally “old”and new strategies for oxygen supply are described. These include the political, administrative and logistic issues surrounding transfusion; conscientious objection in patient blood management; causes and consequences of red cell incompatibility; biochemistry of red blood cell storage; proteomic investigations on stored red blood cells; red blood cells from stem cells; the universal red blood cell; allosteric effectors of hemoglobin; hemoglobin-based oxygen carriers; oxygen delivery by natural and artificial oxygen carriers; cross-linked and polymerized hemoglobins as potential blood substitutes; design of novel pegylated hemoglobins as oxygen carrying plasma expanders; hb octamers by introduction of surface cysteines; hemoglobin-vesicles as a cellular type hemoglobin-based oxygen carrier; animal models and oxidative biomarkers to evaluate pre-clinical safety of extracellular hemoglobins; and academia – industry collaboration in blood substitute development.

Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood is an essential reference for clinicians, haematologists, medicinal chemists, biochemists, molecular biologists, biotechnologists and blood substitute researchers.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Human blood performs many important functions including defence against disease and transport of biomolecules, but perhaps the most important is to carry oxygen – the fundamental biochemical fuel - and other blood gases around the cardiovascular system. Traditional therapies for the impairment of this function, or the rapid replacement of lost blood, have centred around blood transfusions. However scientists are developing chemicals (oxygen therapeutics, or “blood substitutes”) which have the same oxygen-carrying capability as blood and can be used as replacements for blood transfusion or to treat diseases where oxygen transport is impaired.

Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood links the underlying biochemical principles of the field with chemical and biotechnological innovations and pre-clinical development.

The first part of the book deals with the chemistry, biochemistry, physiology and toxicity of oxygen, including chapters on hemoglobin reactivity and regulation; the major cellular and physiological control mechanisms of blood flow and oxygen delivery; hemoglobin and myoglobin; nitric oxide and oxygen; and the role of reactive oxygen and nitrogen species in ischemia/reperfusion Injury.

The book then discusses medical needs for oxygen supply, including acute traumatic hemorrhage and anemia; diagnosis and treatment of haemorrhages in "non-surgical" patients; management of perioperative bleeding; oxygenation in the preterm neonate; ischemia

normobaric and hyperbaric oxygen therapy for ischemic stroke and other neurological conditions; and transfusion therapy in β thalassemia and sickle cell disease

Finally “old”and new strategies for oxygen supply are described. These include the political, administrative and logistic issues surrounding transfusion; conscientious objection in patient blood management; causes and consequences of red cell incompatibility; biochemistry of red blood cell storage; proteomic investigations on stored red blood cells; red blood cells from stem cells; the universal red blood cell; allosteric effectors of hemoglobin; hemoglobin-based oxygen carriers; oxygen delivery by natural and artificial oxygen carriers; cross-linked and polymerized hemoglobins as potential blood substitutes; design of novel pegylated hemoglobins as oxygen carrying plasma expanders; hb octamers by introduction of surface cysteines; hemoglobin-vesicles as a cellular type hemoglobin-based oxygen carrier; animal models and oxidative biomarkers to evaluate pre-clinical safety of extracellular hemoglobins; and academia – industry collaboration in blood substitute development.

Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood is an essential reference for clinicians, haematologists, medicinal chemists, biochemists, molecular biologists, biotechnologists and blood substitute researchers.

More books from Wiley

Cover of the book Algebra II Workbook For Dummies by
Cover of the book Steel Structures by
Cover of the book Tensile Trading by
Cover of the book Sort Your Brain Out by
Cover of the book Methods and Applications of Linear Models by
Cover of the book Systems with Delays by
Cover of the book Problems of Religious Diversity by
Cover of the book Essential Neonatal Medicine by
Cover of the book Reinventing Talent Management by
Cover of the book Solutions Manual to Accompany Linear Algebra by
Cover of the book Verbindungen im Stahl- und Verbundbau by
Cover of the book Modernizing Insurance Regulation by
Cover of the book Newsjacking by
Cover of the book Look at More by
Cover of the book The Practical Guide to Project Management Documentation by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy