Cauchy Problem for Differential Operators with Double Characteristics

Non-Effectively Hyperbolic Characteristics

Nonfiction, Science & Nature, Mathematics, Differential Equations
Cover of the book Cauchy Problem for Differential Operators with Double Characteristics by Tatsuo Nishitani, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Tatsuo Nishitani ISBN: 9783319676128
Publisher: Springer International Publishing Publication: November 24, 2017
Imprint: Springer Language: English
Author: Tatsuo Nishitani
ISBN: 9783319676128
Publisher: Springer International Publishing
Publication: November 24, 2017
Imprint: Springer
Language: English

Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.

A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.

If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.

A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.

If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pµj and Pµj , where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.

More books from Springer International Publishing

Cover of the book Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 by Tatsuo Nishitani
Cover of the book Compact Extended Linear Programming Models by Tatsuo Nishitani
Cover of the book Resistance to Targeted Therapies in Breast Cancer by Tatsuo Nishitani
Cover of the book Potential-Based Analysis of Social, Communication, and Distributed Networks by Tatsuo Nishitani
Cover of the book Safety in Office-Based Dermatologic Surgery by Tatsuo Nishitani
Cover of the book Security and Fault Tolerance in Internet of Things by Tatsuo Nishitani
Cover of the book Behaviour of Lithium-Ion Batteries in Electric Vehicles by Tatsuo Nishitani
Cover of the book Applications of Evolutionary Computation by Tatsuo Nishitani
Cover of the book Locating the Left in Difficult Times by Tatsuo Nishitani
Cover of the book Construction Learning as a Complex Adaptive System by Tatsuo Nishitani
Cover of the book Computer Networks by Tatsuo Nishitani
Cover of the book Representation and Reality in Humans, Other Living Organisms and Intelligent Machines by Tatsuo Nishitani
Cover of the book Trauma Responsive Child Welfare Systems by Tatsuo Nishitani
Cover of the book Compositional Data Analysis by Tatsuo Nishitani
Cover of the book Youth-Community Partnerships for Adolescent Alcohol Prevention by Tatsuo Nishitani
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy