Catalysis by Materials with Well-Defined Structures

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technology, Engineering, Chemical & Biochemical
Cover of the book Catalysis by Materials with Well-Defined Structures by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780128013403
Publisher: Elsevier Science Publication: March 26, 2015
Imprint: Elsevier Science Language: English
Author:
ISBN: 9780128013403
Publisher: Elsevier Science
Publication: March 26, 2015
Imprint: Elsevier Science
Language: English

Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials.

The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis.

Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner

  • Outlines the importance of nanomaterials and their potential as catalysts
  • Provides detailed information on synthesis and characterization of nanomaterials with well-defined structures, relating surface activity to catalytic activity
  • Details how to establish the structure-catalysis relationship and how to reveal the surface chemistry and surface structure of catalysts
  • Offers examples on various in situ characterization instrumental techniques
  • Includes in-depth theoretical modeling utilizing advanced Density Functional Theory (DFT) methods
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials.

The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis.

Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner

More books from Elsevier Science

Cover of the book Energy and Housing by
Cover of the book Nanomagnetism and Spintronics by
Cover of the book Board Review in Preventive Medicine and Public Health by
Cover of the book Multimedia Information Retrieval by
Cover of the book Saliva and Salivation by
Cover of the book Essential MATLAB for Engineers and Scientists by
Cover of the book Events of Increased Biodiversity by
Cover of the book Micro-nanoelectronics Devices by
Cover of the book The Autoimmune Diseases by
Cover of the book The Neurology of HIV Infection by
Cover of the book History of Physiology by
Cover of the book Advances in Clinical Chemistry by
Cover of the book The Agronomy and Economy of Important Tree Crops of the Developing World by
Cover of the book Practical Pediatric Endocrinology in a Limited Resource Setting by
Cover of the book Studies in Natural Products Chemistry by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy