Calcium Signaling In Airway Smooth Muscle Cells

Nonfiction, Science & Nature, Science, Other Sciences, Molecular Biology, Biological Sciences, Biochemistry
Cover of the book Calcium Signaling In Airway Smooth Muscle Cells by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319013121
Publisher: Springer International Publishing Publication: October 30, 2013
Imprint: Springer Language: English
Author:
ISBN: 9783319013121
Publisher: Springer International Publishing
Publication: October 30, 2013
Imprint: Springer
Language: English

This book explores the role calcium signaling plays in cellular responses in almost all types of cells including airway smooth muscle cells. This universal signaling may result from extracellular calcium influx and/or intracellular calcium release, which are precisely controlled and regulated by ion channels, exchangers and/or transporters on the plasmalemmal or sarcoplasmic reticulum membrane. First, several chapters detail calcium release channels (ryanodine receptors and inositol trisphosphate receptors), voltage-dependent potassium channels, transient receptor potential channels, Orai channels, calcium-activated potassium channels, and calcium-activated chloride channels. Well-characterized sodium-calcium exchangers, voltage-dependent calcium channels, and calcium pumps are described also in depth over many chapters.

Ca2+ signaling can be expressed in Ca2+ sparks, waves, oscillations, and global changes in intracellular Ca2+ concentration. Calcium in subcellular compartments (cytosol, sarcoplasmic reticulum, mitochondria, and caveolae) also exhibit dynamic crosstalk. Many molecules including FK506 binding proteins, cyclic adenosine diphosphate ribose, reactive oxygen species, RhoA kinases, caveolin and integrins can modify and induce spatial, temporal and compartmental variations of calcium signaling. In addition, calcium signaling can exhibit sex hormone- and age-dependent changes. A number of chapters are dedicated to covering these diverse formats, spatiotemporal characteristics, multifaceted network and mathematical modeling of Ca2+ signaling.

Neurotransmitters, hormones, growth factors, inflammatory cytokines, and other stimuli may lead to multiple cellular responses by inducing Ca2+ signaling in airway smooth muscle cells. Increasing evidence suggests that Ca2+ pumps and canonical transient receptor potential channels are essential for airway smooth muscle remodeling. Accordingly, several chapters summarize recent advances in the studies of the key role of calcium signaling in physiological cellular responses as well as the development of asthma, chronic obstructive pulmonary disease and other respiratory disorders.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book explores the role calcium signaling plays in cellular responses in almost all types of cells including airway smooth muscle cells. This universal signaling may result from extracellular calcium influx and/or intracellular calcium release, which are precisely controlled and regulated by ion channels, exchangers and/or transporters on the plasmalemmal or sarcoplasmic reticulum membrane. First, several chapters detail calcium release channels (ryanodine receptors and inositol trisphosphate receptors), voltage-dependent potassium channels, transient receptor potential channels, Orai channels, calcium-activated potassium channels, and calcium-activated chloride channels. Well-characterized sodium-calcium exchangers, voltage-dependent calcium channels, and calcium pumps are described also in depth over many chapters.

Ca2+ signaling can be expressed in Ca2+ sparks, waves, oscillations, and global changes in intracellular Ca2+ concentration. Calcium in subcellular compartments (cytosol, sarcoplasmic reticulum, mitochondria, and caveolae) also exhibit dynamic crosstalk. Many molecules including FK506 binding proteins, cyclic adenosine diphosphate ribose, reactive oxygen species, RhoA kinases, caveolin and integrins can modify and induce spatial, temporal and compartmental variations of calcium signaling. In addition, calcium signaling can exhibit sex hormone- and age-dependent changes. A number of chapters are dedicated to covering these diverse formats, spatiotemporal characteristics, multifaceted network and mathematical modeling of Ca2+ signaling.

Neurotransmitters, hormones, growth factors, inflammatory cytokines, and other stimuli may lead to multiple cellular responses by inducing Ca2+ signaling in airway smooth muscle cells. Increasing evidence suggests that Ca2+ pumps and canonical transient receptor potential channels are essential for airway smooth muscle remodeling. Accordingly, several chapters summarize recent advances in the studies of the key role of calcium signaling in physiological cellular responses as well as the development of asthma, chronic obstructive pulmonary disease and other respiratory disorders.

More books from Springer International Publishing

Cover of the book Animals in Tillich's Philosophical Theology by
Cover of the book Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems by
Cover of the book India's Journey Towards Sustainable Population by
Cover of the book Italian Studies on Quality of Life by
Cover of the book Governance Reforms in European University Systems by
Cover of the book Problems and Solutions in Thermoelasticity and Magneto-thermoelasticity by
Cover of the book The Alte Donau: Successful Restoration and Sustainable Management by
Cover of the book Performance Management for Agile Organizations by
Cover of the book Science and Technology by
Cover of the book Dynamics of Coupled Structures, Volume 4 by
Cover of the book Theoretical Aspects of Computing – ICTAC 2018 by
Cover of the book Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4 by
Cover of the book Analog-to-Digital Conversion by
Cover of the book Symbols that Bind, Symbols that Divide by
Cover of the book The Atmosphere and Ionosphere by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy