Brain Theory From A Circuits And Systems Perspective

How Electrical Science Explains Neuro-circuits, Neuro-systems, and Qubits

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Health & Well Being, Medical, Specialties, Internal Medicine, Neuroscience, Science
Cover of the book Brain Theory From A Circuits And Systems Perspective by John Robert Burger, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John Robert Burger ISBN: 9781461464129
Publisher: Springer New York Publication: May 31, 2013
Imprint: Springer Language: English
Author: John Robert Burger
ISBN: 9781461464129
Publisher: Springer New York
Publication: May 31, 2013
Imprint: Springer
Language: English

This book models  an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses.  In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book.  A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron.   New to electrical science are novel pulse-related circuit elements involving recursive neurons.  A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled,  provides a true output with a specified probability, and a false output with complementary probability.  Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit.  Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book.    Simulated qubits and their possibilities are compared to the qubits of quantum physics.  Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations.  These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences.   The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons.  Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons. ​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book models  an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses.  In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book.  A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron.   New to electrical science are novel pulse-related circuit elements involving recursive neurons.  A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled,  provides a true output with a specified probability, and a false output with complementary probability.  Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit.  Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book.    Simulated qubits and their possibilities are compared to the qubits of quantum physics.  Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations.  These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences.   The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons.  Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons. ​

More books from Springer New York

Cover of the book Modern Fourier Analysis by John Robert Burger
Cover of the book Interventional Oncology by John Robert Burger
Cover of the book Principles of Ecosystem Stewardship by John Robert Burger
Cover of the book Landscape Ecology in Theory and Practice by John Robert Burger
Cover of the book Residue Reviews by John Robert Burger
Cover of the book Reviews of Environmental Contamination and Toxicology by John Robert Burger
Cover of the book Engineering Foods for Bioactives Stability and Delivery by John Robert Burger
Cover of the book Stardust, Supernovae and the Molecules of Life by John Robert Burger
Cover of the book Computational Surgery and Dual Training by John Robert Burger
Cover of the book Probability Approximations and Beyond by John Robert Burger
Cover of the book Handbook of Entrepreneurship Research by John Robert Burger
Cover of the book Mangrove Ecosystems of Asia by John Robert Burger
Cover of the book In Vitro Fertilization and Embryo Transfer in Primates by John Robert Burger
Cover of the book Reproductive Endocrinology and Infertility by John Robert Burger
Cover of the book Reviews of Environmental Contamination and Toxicology by John Robert Burger
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy