Brain Theory From A Circuits And Systems Perspective

How Electrical Science Explains Neuro-circuits, Neuro-systems, and Qubits

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Health & Well Being, Medical, Specialties, Internal Medicine, Neuroscience, Science
Cover of the book Brain Theory From A Circuits And Systems Perspective by John Robert Burger, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John Robert Burger ISBN: 9781461464129
Publisher: Springer New York Publication: May 31, 2013
Imprint: Springer Language: English
Author: John Robert Burger
ISBN: 9781461464129
Publisher: Springer New York
Publication: May 31, 2013
Imprint: Springer
Language: English

This book models  an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses.  In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book.  A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron.   New to electrical science are novel pulse-related circuit elements involving recursive neurons.  A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled,  provides a true output with a specified probability, and a false output with complementary probability.  Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit.  Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book.    Simulated qubits and their possibilities are compared to the qubits of quantum physics.  Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations.  These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences.   The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons.  Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons. ​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book models  an idealized neuron as being driven by basic electrical elements, the goal being to systematically characterize the logical properties of neural pulses.  In order to constitute a system, neurons as pulsating devices may be represented using novel circuit elements as delineated in this book.  A plausible brain system is implied by the delineated elements and logically follows from known and likely properties of a neuron.   New to electrical science are novel pulse-related circuit elements involving recursive neurons.  A recursive neuron, when properly excited, produces a self-sustaining pulse train that when sampled,  provides a true output with a specified probability, and a false output with complementary probability.  Because of its similarity to the qubits of quantum mechanics, the recursive pulsating neuron is termed a simulated qubit.  Recursive neurons easily function as controlled toggle devices and so are capable of massively parallel calculations, this being a new dimension in brain functioning as described in this book.    Simulated qubits and their possibilities are compared to the qubits of quantum physics.  Included in the book are suggested neural circuits for associative memory search via a randomized process of cue selection, and neural circuits for priority calculations.  These serve to select returns from long term memory, which in turn determines one's next conscious thought or action based on past memorized experiences.   The book reports on proposals involving electron tunneling between synapses, and quantum computations within neurons.  Although not a textbook, there are easy exercises at the ends of chapters, and in the appendix there are twelve simulation experiments concerning neurons. ​

More books from Springer New York

Cover of the book Application of Threshold Concepts in Natural Resource Decision Making by John Robert Burger
Cover of the book Aided Augmentative Communication for Individuals with Autism Spectrum Disorders by John Robert Burger
Cover of the book Transcendental Numbers by John Robert Burger
Cover of the book Residue Reviews / Rückstands-Berichte by John Robert Burger
Cover of the book Regression Modeling Strategies by John Robert Burger
Cover of the book Advanced H∞ Control by John Robert Burger
Cover of the book Multi-scale Analysis for Random Quantum Systems with Interaction by John Robert Burger
Cover of the book Resilience in Children, Adolescents, and Adults by John Robert Burger
Cover of the book Teaching Mindfulness by John Robert Burger
Cover of the book Experimental Hematology Today 1978 by John Robert Burger
Cover of the book Microarrays by John Robert Burger
Cover of the book Language and Recursion by John Robert Burger
Cover of the book Surgical Oncology by John Robert Burger
Cover of the book Ethnobotany and Biocultural Diversities in the Balkans by John Robert Burger
Cover of the book Cancer Caregiving in the United States by John Robert Burger
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy