Bayesian Inference and Maximum Entropy Methods in Science and Engineering

MaxEnt 37, Jarinu, Brazil, July 09–14, 2017

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Mathematics, Statistics
Cover of the book Bayesian Inference and Maximum Entropy Methods in Science and Engineering by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319911434
Publisher: Springer International Publishing Publication: July 12, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319911434
Publisher: Springer International Publishing
Publication: July 12, 2018
Imprint: Springer
Language: English

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

More books from Springer International Publishing

Cover of the book Progress in Life Cycle Assessment 2018 by
Cover of the book Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media by
Cover of the book VLSI-SoC: Design for Reliability, Security, and Low Power by
Cover of the book Cyber-Physical Systems Security by
Cover of the book Geography Education for Global Understanding by
Cover of the book One Hundred Years of Zoning and the Future of Cities by
Cover of the book Multimodal Pragmatics and Translation by
Cover of the book Family-School Partnerships in Context by
Cover of the book Automation of Finite Element Methods by
Cover of the book Optimal Interconnection Trees in the Plane by
Cover of the book Inclusive Policing from the Inside Out by
Cover of the book Handling Uncertainty and Networked Structure in Robot Control by
Cover of the book The Precarious in the Cinemas of the Americas by
Cover of the book Motivation of Workers on Microtask Crowdsourcing Platforms by
Cover of the book Innovative Start-Ups and the Distribution of Human Capital by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy