Bayesian Inference and Maximum Entropy Methods in Science and Engineering

MaxEnt 37, Jarinu, Brazil, July 09–14, 2017

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Mathematics, Statistics
Cover of the book Bayesian Inference and Maximum Entropy Methods in Science and Engineering by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319911434
Publisher: Springer International Publishing Publication: July 12, 2018
Imprint: Springer Language: English
Author:
ISBN: 9783319911434
Publisher: Springer International Publishing
Publication: July 12, 2018
Imprint: Springer
Language: English

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. 

Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. 

For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

More books from Springer International Publishing

Cover of the book Atlas of Cutaneous Lymphomas by
Cover of the book Large-Scale Networks in Engineering and Life Sciences by
Cover of the book The Impact of Information on Modern Humans by
Cover of the book ICT Education by
Cover of the book PET/CT in Lung Cancer by
Cover of the book Alfred Hitchcock's Vertigo and the Hermeneutic Spiral by
Cover of the book Towards Ultrasound-guided Spinal Fusion Surgery by
Cover of the book Applications of Systems Thinking and Soft Operations Research in Managing Complexity by
Cover of the book The English Embrace of the American Indians by
Cover of the book Algorithms and Architectures for Parallel Processing by
Cover of the book The Human Face of Water Security by
Cover of the book Green's Functions by
Cover of the book Domain Decomposition Methods in Science and Engineering XXII by
Cover of the book Advances in Mechanical Engineering by
Cover of the book Numerical Methods for Stochastic Partial Differential Equations with White Noise by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy