Backpropagation

Theory, Architectures, and Applications

Nonfiction, Health & Well Being, Psychology, Cognitive Psychology
Cover of the book Backpropagation by , Taylor and Francis
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781134775811
Publisher: Taylor and Francis Publication: February 1, 2013
Imprint: Psychology Press Language: English
Author:
ISBN: 9781134775811
Publisher: Taylor and Francis
Publication: February 1, 2013
Imprint: Psychology Press
Language: English

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation. The first section presents the theory and principles behind backpropagation as seen from different perspectives such as statistics, machine learning, and dynamical systems. The second presents a number of network architectures that may be designed to match the general concepts of Parallel Distributed Processing with backpropagation learning. Finally, the third section shows how these principles can be applied to a number of different fields related to the cognitive sciences, including control, speech recognition, robotics, image processing, and cognitive psychology. The volume is designed to provide both a solid theoretical foundation and a set of examples that show the versatility of the concepts. Useful to experts in the field, it should also be most helpful to students seeking to understand the basic principles of connectionist learning and to engineers wanting to add neural networks in general -- and backpropagation in particular -- to their set of problem-solving methods.

More books from Taylor and Francis

Cover of the book Outstanding Women in Public Administration: Leaders, Mentors, and Pioneers by
Cover of the book Sex and Sexualities in Contemporary Indonesia by
Cover of the book Marketing Budgeting (RLE Marketing) by
Cover of the book The Church of Mary Tudor by
Cover of the book Feminist Art Criticism by
Cover of the book Aging and Family Therapy by
Cover of the book The Baltic Nations and Europe by
Cover of the book Commercial Shipping Handbook by
Cover of the book Prizing Children's Literature by
Cover of the book Sandplay Therapy in Vulnerable Communities by
Cover of the book Developer's Digital Media Reference by
Cover of the book International Strategy and Market Performance in New Biotechnology Firms by
Cover of the book Memory and Learning by
Cover of the book Women, Religion and the Body in South Asia by
Cover of the book Intellectual Property Rights and Competition in Standard Setting by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy