Anticipating Future Innovation Pathways Through Large Data Analysis

Business & Finance, Management & Leadership, Production & Operations Management, Industries & Professions, Industries
Cover of the book Anticipating Future Innovation Pathways Through Large Data Analysis by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319390567
Publisher: Springer International Publishing Publication: July 25, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319390567
Publisher: Springer International Publishing
Publication: July 25, 2016
Imprint: Springer
Language: English

This book aims to identify promising future developmental opportunities and applications for Tech Mining. Specifically, the enclosed contributions will pursue three converging themes:

  • The increasing availability of electronic text data resources relating to Science, Technology and Innovation (ST&I).

  • The multiple methods that are able to treat this data effectively and incorporate means to tap into human expertise and interests.

  • Translating those analyses to provide useful intelligence on likely future developments of particular emerging S&T targets. 

Tech Mining can be defined as text analyses of ST&I information resources to generate Competitive Technical Intelligence (CTI). It combines bibliometrics and advanced text analytic, drawing on specialized knowledge pertaining to ST&I. Tech Mining may also be viewed as a special form of “Big Data” analytics because it searches on a target emerging technology (or key organization) of interest in global databases. One then downloads, typically, thousands of field-structured text records (usually abstracts), and analyses those for useful CTI.  Forecasting Innovation Pathways (FIP) is a methodology drawing on Tech Mining plus additional steps to elicit stakeholder and expert knowledge to link recent ST&I activity to likely future development. 

A decade ago, we demeaned Management of Technology (MOT) as somewhat self-satisfied and ignorant.  Most technology managers relied overwhelmingly on casual human judgment, largely oblivious of the potential of empirical analyses to inform R&D management and science policy.  CTI, Tech Mining, and FIP are changing that. The accumulation of Tech Mining research over the past decade offers a rich resource of means to get at emerging technology developments and organizational networks to date.  Efforts to bridge from those recent histories of development to project likely FIP, however, prove considerably harder. One focus of this volume is to extend the repertoire of information resources; that will enrich FIP.

Featuring cases of novel approaches and applications of Tech Mining and FIP, this volume will present frontier advances in ST&I text analytics that will be of  interest to students, researchers, practitioners, scholars and policy makers in the fields of R&D planning, technology management, science policy and innovation strategy.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book aims to identify promising future developmental opportunities and applications for Tech Mining. Specifically, the enclosed contributions will pursue three converging themes:

Tech Mining can be defined as text analyses of ST&I information resources to generate Competitive Technical Intelligence (CTI). It combines bibliometrics and advanced text analytic, drawing on specialized knowledge pertaining to ST&I. Tech Mining may also be viewed as a special form of “Big Data” analytics because it searches on a target emerging technology (or key organization) of interest in global databases. One then downloads, typically, thousands of field-structured text records (usually abstracts), and analyses those for useful CTI.  Forecasting Innovation Pathways (FIP) is a methodology drawing on Tech Mining plus additional steps to elicit stakeholder and expert knowledge to link recent ST&I activity to likely future development. 

A decade ago, we demeaned Management of Technology (MOT) as somewhat self-satisfied and ignorant.  Most technology managers relied overwhelmingly on casual human judgment, largely oblivious of the potential of empirical analyses to inform R&D management and science policy.  CTI, Tech Mining, and FIP are changing that. The accumulation of Tech Mining research over the past decade offers a rich resource of means to get at emerging technology developments and organizational networks to date.  Efforts to bridge from those recent histories of development to project likely FIP, however, prove considerably harder. One focus of this volume is to extend the repertoire of information resources; that will enrich FIP.

Featuring cases of novel approaches and applications of Tech Mining and FIP, this volume will present frontier advances in ST&I text analytics that will be of  interest to students, researchers, practitioners, scholars and policy makers in the fields of R&D planning, technology management, science policy and innovation strategy.

More books from Springer International Publishing

Cover of the book Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being by
Cover of the book Modern Digital Radio Communication Signals and Systems by
Cover of the book Urban Governance and Informal Settlements by
Cover of the book Descriptions, Translations and the Caribbean by
Cover of the book Software-Based Acoustical Measurements by
Cover of the book Gravity Inversion and Integration by
Cover of the book Algorithms and Discrete Applied Mathematics by
Cover of the book Connecting Women by
Cover of the book Social Computing and Social Media. Communication and Social Communities by
Cover of the book Quantum Theory and Statistical Thermodynamics by
Cover of the book Product-Focused Software Process Improvement by
Cover of the book Artificial Neural Networks and Machine Learning – ICANN 2018 by
Cover of the book Robotic Urology by
Cover of the book Information Loss in Deterministic Signal Processing Systems by
Cover of the book Organic Radical Polymers by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy