Analytic Function Theory of Several Variables

Elements of Oka’s Coherence

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Algebra
Cover of the book Analytic Function Theory of Several Variables by Junjiro Noguchi, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Junjiro Noguchi ISBN: 9789811002915
Publisher: Springer Singapore Publication: August 16, 2016
Imprint: Springer Language: English
Author: Junjiro Noguchi
ISBN: 9789811002915
Publisher: Springer Singapore
Publication: August 16, 2016
Imprint: Springer
Language: English

The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).

The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.

The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".

It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).

The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.

The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".

It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.

More books from Springer Singapore

Cover of the book Women in the Indian Diaspora by Junjiro Noguchi
Cover of the book Agriculture as a Metaphor for Creativity in All Human Endeavors by Junjiro Noguchi
Cover of the book Field Responsive Fluids as Smart Materials by Junjiro Noguchi
Cover of the book Salicylic Acid: A Multifaceted Hormone by Junjiro Noguchi
Cover of the book Environmental Management in Mega Construction Projects by Junjiro Noguchi
Cover of the book Data Science by Junjiro Noguchi
Cover of the book Emerging Practices in Scholarship of Learning and Teaching in a Digital Era by Junjiro Noguchi
Cover of the book Sustainability Issues in Civil Engineering by Junjiro Noguchi
Cover of the book Progress in Computing, Analytics and Networking by Junjiro Noguchi
Cover of the book Facing China as a New Global Superpower by Junjiro Noguchi
Cover of the book Brief Guidelines for Methods and Statistics in Medical Research by Junjiro Noguchi
Cover of the book Pathology of the Bile Duct by Junjiro Noguchi
Cover of the book Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering by Junjiro Noguchi
Cover of the book Morphological Analysis of Cultural DNA by Junjiro Noguchi
Cover of the book Statistics and its Applications by Junjiro Noguchi
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy