An Introductory Course in Functional Analysis

Nonfiction, Science & Nature, Mathematics, Functional Analysis
Cover of the book An Introductory Course in Functional Analysis by Adam Bowers, Nigel J. Kalton, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Adam Bowers, Nigel J. Kalton ISBN: 9781493919451
Publisher: Springer New York Publication: December 11, 2014
Imprint: Springer Language: English
Author: Adam Bowers, Nigel J. Kalton
ISBN: 9781493919451
Publisher: Springer New York
Publication: December 11, 2014
Imprint: Springer
Language: English

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn**–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–**Pettis theorem.

With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Based on a graduate course by the celebrated analyst Nigel Kalton, this well-balanced introduction to functional analysis makes clear not only how, but why, the field developed. All major topics belonging to a first course in functional analysis are covered. However, unlike traditional introductions to the subject, Banach spaces are emphasized over Hilbert spaces, and many details are presented in a novel manner, such as the proof of the Hahn**–Banach theorem based on an inf-convolution technique, the proof of Schauder's theorem, and the proof of the Milman–**Pettis theorem.

With the inclusion of many illustrative examples and exercises, An Introductory Course in Functional Analysis equips the reader to apply the theory and to master its subtleties. It is therefore well-suited as a textbook for a one- or two-semester introductory course in functional analysis or as a companion for independent study.

More books from Springer New York

Cover of the book Fruit Breeding by Adam Bowers, Nigel J. Kalton
Cover of the book Plastics End Use Applications by Adam Bowers, Nigel J. Kalton
Cover of the book Sustainable Supply Chains by Adam Bowers, Nigel J. Kalton
Cover of the book Inflammation and Lung Cancer by Adam Bowers, Nigel J. Kalton
Cover of the book Empirical Agent-Based Modelling - Challenges and Solutions by Adam Bowers, Nigel J. Kalton
Cover of the book Dynamic Data Analysis by Adam Bowers, Nigel J. Kalton
Cover of the book Mars and How to Observe It by Adam Bowers, Nigel J. Kalton
Cover of the book Pediatric Urology by Adam Bowers, Nigel J. Kalton
Cover of the book Translational Approach to Heart Failure by Adam Bowers, Nigel J. Kalton
Cover of the book Nutritional Intervention in the Aging Process by Adam Bowers, Nigel J. Kalton
Cover of the book Phytochemicals, Plant Growth, and the Environment by Adam Bowers, Nigel J. Kalton
Cover of the book Hip Fractures by Adam Bowers, Nigel J. Kalton
Cover of the book Slayers, Saviors, Servants and Sex by Adam Bowers, Nigel J. Kalton
Cover of the book An Introduction to Continuous-Time Stochastic Processes by Adam Bowers, Nigel J. Kalton
Cover of the book Emerging Technologies for Information Systems, Computing, and Management by Adam Bowers, Nigel J. Kalton
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy