Advances in Seed Priming

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Botany
Cover of the book Advances in Seed Priming by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811300325
Publisher: Springer Singapore Publication: June 7, 2018
Imprint: Springer Language: English
Author:
ISBN: 9789811300325
Publisher: Springer Singapore
Publication: June 7, 2018
Imprint: Springer
Language: English

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Most crop plants grow in environments that are suboptimal, which prevents the plants from attaining their full genetic potential for growth and reproduction. Stress due to abiotic and biotic agents has a significant effect on world food production. Annually, an estimated 15% of global yields are lost, but this figure belies far greater losses for specific food systems and the people whose existence is dependent upon them, particularly in developing countries. Current efforts to mitigate these losses are worryingly over-reliant on the use of sophisticated and costly chemicals /measures with substantial economic and environmental costs, or on the development of efficient and smart crop varieties, which can take decades. What we need is a broad range of safe, robust and equitable solutions for food producers. One under-investigated approach is that of utilizing the crop plant’s innate immune system to resist stress. More specifically, the innate immune system can be sensitized or ‘primed’ to respond more quickly and strongly to protect the plant against stresses. However, a strategy of employing priming in combination with reduced pesticide use can enhance protection, and help to meet commitments to reducing chemical inputs in agriculture.

This book discusses in detail different segments of priming in addressing stress factors and traits to increase competitiveness against all odds. Adopting a holistic and systematic approach, it addresses priming to counter climate-change related adverse effects coupled with pest and pathogen related stress on the productivity of crops utilizing natural resources to reap sustainable environmental, economic and social benefits for potential productivity of crops, maintaining synergy between soil, water and plants in ways that mimic nature.

More books from Springer Singapore

Cover of the book Intelligent Control by
Cover of the book Stochastic Geometry Analysis of Multi-Antenna Wireless Networks by
Cover of the book Success in Higher Education by
Cover of the book Human Microbes - The Power Within by
Cover of the book Cancer and Chemoprevention: An Overview by
Cover of the book Travel Plans for New Residential Developments: Insights from Theory and Practice by
Cover of the book Quality Function Deployment for Buildable and Sustainable Construction by
Cover of the book Sustainable Luxury, Entrepreneurship, and Innovation by
Cover of the book Big Data and Innovation in Tourism, Travel, and Hospitality by
Cover of the book China Satellite Navigation Conference (CSNC) 2019 Proceedings by
Cover of the book 3D Printing and Additive Manufacturing Technologies by
Cover of the book New Media and China's Social Development by
Cover of the book Recent Developments in Space Law by
Cover of the book Transactions on Intelligent Welding Manufacturing by
Cover of the book A Companion to Wittgenstein on Education by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy