Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Computers, Advanced Computing, Programming, User Interfaces
Cover of the book Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices by , Springer India
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9788132237037
Publisher: Springer India Publication: January 21, 2017
Imprint: Springer Language: English
Author:
ISBN: 9788132237037
Publisher: Springer India
Publication: January 21, 2017
Imprint: Springer
Language: English

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

More books from Springer India

Cover of the book Computational Intelligence in Data Mining - Volume 1 by
Cover of the book Chronic Venous Disorders of the Lower Limbs by
Cover of the book Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies by
Cover of the book Principles of Critical Care in Obstetrics by
Cover of the book Channel Coding Techniques for Wireless Communications by
Cover of the book Application of Evolutionary Algorithms for Multi-objective Optimization in VLSI and Embedded Systems by
Cover of the book Governing India's Northeast by
Cover of the book Cities and Sustainability by
Cover of the book Water Resource Economics by
Cover of the book Exploring Image Binarization Techniques by
Cover of the book Information Systems Design and Intelligent Applications by
Cover of the book Positron Emission Tomography by
Cover of the book Eco-friendly Polymer Nanocomposites by
Cover of the book Design and Analysis of Spiral Inductors by
Cover of the book Inflammation: Natural Resources and Its Applications by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy