A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations

Nonfiction, Computers, Advanced Computing, Computer Science, Science & Nature, Science, Biological Sciences, Health & Well Being, Medical
Cover of the book A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789401790413
Publisher: Springer Netherlands Publication: July 3, 2014
Imprint: Springer Language: English
Author:
ISBN: 9789401790413
Publisher: Springer Netherlands
Publication: July 3, 2014
Imprint: Springer
Language: English

The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems.  More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. 

Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. 

Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology.  Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources.  In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. 

As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The complexity of biological systems has intrigued scientists from many disciplines and has given birth to the highly influential field of systems biology wherein a wide array of mathematical techniques, such as flux balance analysis, and technology platforms, such as next generation sequencing, is used to understand, elucidate, and predict the functions of complex biological systems.  More recently, the field of synthetic biology, i.e., de novo engineering of biological systems, has emerged. Scientists from various fields are focusing on how to render this engineering process more predictable, reliable, scalable, affordable, and easy. 

Systems and control theory is a branch of engineering and applied sciences that rigorously deals with the complexities and uncertainties of interconnected systems with the objective of characterising fundamental systemic properties such as stability, robustness, communication capacity, and other performance metrics. Systems and control theory also strives to offer concepts and methods that facilitate the design of systems with rigorous guarantees on these properties. Over the last 100 years, it has made stellar theoretical and technological contributions in diverse fields such as aerospace, telecommunication, storage, automotive, power systems, and others. Can it have, or evolve to have, a similar impact in biology? The chapters in this book demonstrate that, indeed, systems and control theoretic concepts and techniques can have a significant impact in systems and synthetic biology. 

Volume I provides a panoramic view that illustrates the potential of such mathematical methods in systems and synthetic biology.  Recent advances in systems and synthetic biology have clearly demonstrated the benefits of a rigorous and systematic approach rooted in the principles of systems and control theory - not only does it lead to exciting insights and discoveries but it also reduces the inordinately lengthy trial-and-error process of wet-lab experimentation, thereby facilitating significant savings in human and financial resources.  In Volume I, some of the leading researchers in the field of systems and synthetic biology demonstrate how systems and control theoretic concepts and techniques can be useful, or should evolve to be useful, in order to understand how biological systems function. 

As the eminent computer scientist Donald Knuth put it, "biology easily has 500 years of exciting problems to work on". This edited book presents but a small fraction of those for the benefit of (1) systems and control theorists interested in molecular and cellular biology and (2) biologists interested in rigorous modelling, analysis and control of biological systems.

More books from Springer Netherlands

Cover of the book Quantum Nano-Photonics by
Cover of the book Lessons learned from Long-term Soil Fertility Management Experiments in Africa by
Cover of the book Hepatitis E Virus by
Cover of the book Natural Fibres: Advances in Science and Technology Towards Industrial Applications by
Cover of the book Imms’ Outline Of Entomology by
Cover of the book Purpose in Life by
Cover of the book Modern Physics and its Philosophy by
Cover of the book The Kleiner Feldberg Cloud Experiment 1990 by
Cover of the book The Paradoxes of Action by
Cover of the book The Legend of Jonah by
Cover of the book Coastal Zone Management Imperative for Maritime Developing Nations by
Cover of the book The Rescue and Achievement of Refugee Scholars by
Cover of the book Efficiency Measures in the Agricultural Sector by
Cover of the book The 1997 Municipal Elections in Bosnia and Herzegovina by
Cover of the book Pedagogy in (E)Motion by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy