21st Century Complete Guide to Natural Gas Vehicles - Alternative Fuel Vehicles (AFV), Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Technology, Safety, Refueling Issues

Nonfiction, Science & Nature, Technology, Power Resources
Cover of the book 21st Century Complete Guide to Natural Gas Vehicles - Alternative Fuel Vehicles (AFV), Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Technology, Safety, Refueling Issues by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781301977451
Publisher: Progressive Management Publication: August 15, 2013
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781301977451
Publisher: Progressive Management
Publication: August 15, 2013
Imprint: Smashwords Edition
Language: English

This comprehensive and up-to-date ebook provides a unique guide to natural gas vehicles, compiling ten official documents with details of every aspect of the issue: CNG and LNG designs, success stories, references, information on safety and refueling issues, and much more. Contents include:

Part 1: UPS CNG Truck Fleet Final Results, Alternative Fuel Truck Evaluation Project * Part 2: Clean Cities 2010 Vehicle Buyer's Guide - Natural Gas, Propane, Hybrid Electric, Ethanol, Biodiesel * Part 3: Natural Gas Vehicles: Status, Barriers, and Opportunities * Part 4: White Paper on Natural Gas Vehicles: Status, Barriers, and Opportunities * Part 5: Natural Gas Passenger Vehicles: Availability, Cost, and Performance * Part 6: Clean Alternative Fuels: Compressed Natural Gas * Part 7: Clean Alternative Fuels: Liquefied Natural Gas * Part 8: EPA Case Study: Tests Demonstrate Safety of Natural-Gas Vehicles for King County Police * Part 9: Resource Guide for Heavy-Duty LNG Vehicles, Infrastructure, and Support Operations * Part 10: Senate Hearing - Usage of Natural Gas - To Assess the Opportunities For, Current Level of Investment In, and Barriers to the Expanded Usage of Natural Gas as a Fuel for Transportation (2012)

While natural gas is often used as the energy source for residential, commercial, and industrial processes, engines designed to run on gasoline or diesel can also be modified to operate on natural gas — a clean burning fuel. Natural gas vehicles (NGVs) can be dedicated to natural gas as a fuel source, or they can be bi-fuel, running on either natural gas or gasoline, or natural gas or diesel, although most natural gas engines are spark ignited. Natural gas engine technologies can differ in the following ways: the method used to ignite the fuel in the cylinders, the air-fuel ratio, the compression ratio, and the resulting performance and emissions capabilities. Natural gas has a high octane rating, which in spark ignition engines (usual for CNG) allows an increase in power. However, natural gas occupies a larger volume in the cylinder than liquid fuels, reducing the number of oxygen molecules (share of air in the cylinder), which reduces power. The net effect on natural gas power vs. gasoline is relatively neutral. However, since it is a gaseous fuel at atmospheric pressure and occupies a considerably larger storage volume per unit of energy than refined petroleum liquids, it is stored on-board the vehicle in either a compressed gaseous or liquefied state. The storage requirements are still much greater than for refined petroleum products. This increases vehicle weight, which tends to reduce fuel economy. To become compressed natural gas (CNG), it is pressurized in a tank at up to 3,600 pounds per square inch. Typically, in sedans, the tank is mounted in the trunk or replaces the existing fuel tank; on trucks, the tank is mounted on the frame; and on buses, it is mounted on top of the roof. Although tanks can be made completely from metal, they are typically composed of metal liners reinforced by a wrap of composite fiber material with pressure-relief devices designed to withstand impact. Tanks do increase the vehicle weight, and with the lower energy density of natural gas, vehicle ranges are generally reduced. To become liquefied natural gas (LNG), natural gas is cooled to -260 °F and filtered to remove impurities. LNG is stored in double-wall, vacuum-insulated pressure tanks and is primarily used on heavy-duty trucks, providing increased range over CNG.

NGVs and their respective fueling systems must meet stringent industry and government standards for compression, storage, and fueling. They are designed to perform safely during both normal operations and crash situations.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This comprehensive and up-to-date ebook provides a unique guide to natural gas vehicles, compiling ten official documents with details of every aspect of the issue: CNG and LNG designs, success stories, references, information on safety and refueling issues, and much more. Contents include:

Part 1: UPS CNG Truck Fleet Final Results, Alternative Fuel Truck Evaluation Project * Part 2: Clean Cities 2010 Vehicle Buyer's Guide - Natural Gas, Propane, Hybrid Electric, Ethanol, Biodiesel * Part 3: Natural Gas Vehicles: Status, Barriers, and Opportunities * Part 4: White Paper on Natural Gas Vehicles: Status, Barriers, and Opportunities * Part 5: Natural Gas Passenger Vehicles: Availability, Cost, and Performance * Part 6: Clean Alternative Fuels: Compressed Natural Gas * Part 7: Clean Alternative Fuels: Liquefied Natural Gas * Part 8: EPA Case Study: Tests Demonstrate Safety of Natural-Gas Vehicles for King County Police * Part 9: Resource Guide for Heavy-Duty LNG Vehicles, Infrastructure, and Support Operations * Part 10: Senate Hearing - Usage of Natural Gas - To Assess the Opportunities For, Current Level of Investment In, and Barriers to the Expanded Usage of Natural Gas as a Fuel for Transportation (2012)

While natural gas is often used as the energy source for residential, commercial, and industrial processes, engines designed to run on gasoline or diesel can also be modified to operate on natural gas — a clean burning fuel. Natural gas vehicles (NGVs) can be dedicated to natural gas as a fuel source, or they can be bi-fuel, running on either natural gas or gasoline, or natural gas or diesel, although most natural gas engines are spark ignited. Natural gas engine technologies can differ in the following ways: the method used to ignite the fuel in the cylinders, the air-fuel ratio, the compression ratio, and the resulting performance and emissions capabilities. Natural gas has a high octane rating, which in spark ignition engines (usual for CNG) allows an increase in power. However, natural gas occupies a larger volume in the cylinder than liquid fuels, reducing the number of oxygen molecules (share of air in the cylinder), which reduces power. The net effect on natural gas power vs. gasoline is relatively neutral. However, since it is a gaseous fuel at atmospheric pressure and occupies a considerably larger storage volume per unit of energy than refined petroleum liquids, it is stored on-board the vehicle in either a compressed gaseous or liquefied state. The storage requirements are still much greater than for refined petroleum products. This increases vehicle weight, which tends to reduce fuel economy. To become compressed natural gas (CNG), it is pressurized in a tank at up to 3,600 pounds per square inch. Typically, in sedans, the tank is mounted in the trunk or replaces the existing fuel tank; on trucks, the tank is mounted on the frame; and on buses, it is mounted on top of the roof. Although tanks can be made completely from metal, they are typically composed of metal liners reinforced by a wrap of composite fiber material with pressure-relief devices designed to withstand impact. Tanks do increase the vehicle weight, and with the lower energy density of natural gas, vehicle ranges are generally reduced. To become liquefied natural gas (LNG), natural gas is cooled to -260 °F and filtered to remove impurities. LNG is stored in double-wall, vacuum-insulated pressure tanks and is primarily used on heavy-duty trucks, providing increased range over CNG.

NGVs and their respective fueling systems must meet stringent industry and government standards for compression, storage, and fueling. They are designed to perform safely during both normal operations and crash situations.

More books from Progressive Management

Cover of the book Apollo and America's Moon Landing Program: Apollo 8 Official NASA Mission Reports and Press Kit - The Epic 1968 First Flight to the Moon by Borman, Lovell and Anders by Progressive Management
Cover of the book Europe's Dependence on Russian Natural Gas: Perspectives and Recommendations for a Long-term Strategy, Putin, Politics, and Gazprom, Ukraine, Diversification Options by Progressive Management
Cover of the book The 6555th Missile and Space Launches Through 1970, Post-War Legacy, Matador, Bomarc, Snark, Navaho, Thor, Atlas and Minuteman Ballistic Missile, Thor, Titan II and Gemini Program by Progressive Management
Cover of the book Terror Operations: Case Studies in Terrorism (TRADOC Handbook) Tokyo Subway Sarin Attack, Murrah Building Oklahoma Bombing, Khobar Towers, USS Cole Bombing, London Bombs 2005, Beslan Hostage Crisis by Progressive Management
Cover of the book Toward an Air and Space Force: Naval Aviation and the Implications for Space Power - Including History of the Architect of Naval Aviation, Admiral William Moffett by Progressive Management
Cover of the book 21st Century U.S. Military Documents: Air Force F-35 Lightning Fighter Aircraft - Operations Procedures, Aircrew Evaluation Criteria, Aircrew Training Flying Operations by Progressive Management
Cover of the book The Dorian Files Revealed: A Compendium of the NRO's Manned Orbiting Laboratory (NRO) Documents, Photoreconnaissance, Spy in the Sky, Blue Gemini, Air Force Space Station, Dyna-Soar, Apollo Study by Progressive Management
Cover of the book 2011 Essential Guide to Health and Medical Issues Involving Natural Disasters: Official Information for Individuals and Businesses on Dealing with Floods, Hurricanes, and other Emergencies by Progressive Management
Cover of the book Cryptocurrency and State Sovereignty: Comprehensive Review of Bitcoin, Blockchain, and Virtual Currency Technology, Hash Functions, Merkle Trees, and Security, Government Bans and Regulations by Progressive Management
Cover of the book NSA Secrets Declassified: Eavesdropping on Hell: Historical Guide to Western Communications Intelligence and the Holocaust 1939-1945 - Enigma, Codebreakers, World War II, Jewish Refugees, Nazi Gold by Progressive Management
Cover of the book Pearl to V-J Day: World War II in the Pacific - Air Force Symposium, Grand Strategy, Island Campaign, Intelligence Methodologies, Sea War Against Japan, Air and Submarine War, Atomic Bomb Decision by Progressive Management
Cover of the book NASA Human Spaceflight Astronaut Health Research for Exploration and Manned Mars Missions, Risk Report WSN-02, Sleep Loss, Circadian, Work Overload, Bone Fracture, Medication, Renal Stone Formation by Progressive Management
Cover of the book Guide to the Career and Work of Rear Admiral Alfred Thayer Mahan: American Naval Strategy, Mahanian Doctrine, The Influence of Sea Power upon History Impact, Maritime Power, World War I, Nuclear Age by Progressive Management
Cover of the book Aeronautics and Space Report of the President Fiscal Year 2016 Activities: Comprehensive Survey of Spacecraft, Satellites, Airplanes, and Research Activities of Eleven U.S. Federal Agencies by Progressive Management
Cover of the book Bombing for Effect: The Best Use of Airpower in War, Effects-Based Operations (EBO) Air Campaigns, Review of Vietnam Rolling Thunder and Linebacker, Desert Storm, Operation Allied Force by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy